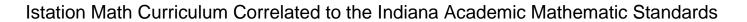
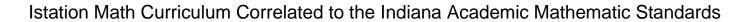
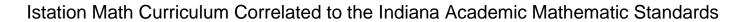

Kindergarten – Grade 5


Contents

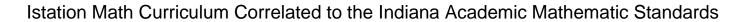
Power Path Featured Content	10
Newest Features	10
Power Path Featured Content (Spanish)	13
Newest Features	13
Kindergarten	14
Number Sense	14
K.NS.1	14
K.NS.2	15
K.NS.3	16
K.NS.4	16
K.NS.5	18
K.NS.7	19
K.NS.8	20
K.NS.9	20
K.NS.11	21
Computation and Algebraic Thinking	21
K.CA.1	21
K.CA.2	23
K.CA.3	24
K.CA.4	26
K.CA.5	27
Geometry	28
K.G.2	28
Measurement	28



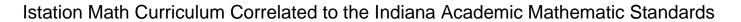
K.M.1	28
Data Analysis	29
K.DA.1	29
Grade 1	30
Number Sense	30
1.NS.1	30
1.NS.2	31
1.NS.4	31
1.NS.6	32
Computation and Algebraic Thinking	33
1.CA.1	33
1.CA.2	34
1.CA.4	36
1.CA.5	36
Geometry	38
1.G.2	38
1.G.4	38
Measurement	39
1.M.2	39
1.M.3	39
Data Analysis	40
1.DA.1	40
Grade 2	41
Number Sense	41
2.NS.2	41



2.NS.5	42
2.NS.6	42
2.NS.7	43
Computation and Algebraic Thinking	44
2.CA.1	44
2.CA.2	45
2.CA.4	46
2.CA.5	46
2.CA.6	47
Geometry	48
2.G.4	48
2.G.5	49
Measurement	49
2.M.2	49
2.M.3	50
2.M.5	50
2.M.7	51
Data Analysis	51
2.DA.1	51
Grade 3	52
Number Sense	52
3.NS.3	52
3.NS.4	52
3.NS.5	53
3.NS.6	53



	3.NS.7	54
	3.NS.8	55
	3.NS.9	57
С	omputation	57
	3.C.1	57
	3.C.2	58
	3.C.3	59
	3.C.4	59
	3.C.5	60
	3.C.6	61
Α	lgebraic Thinking	63
	3.AT.2	63
	3.AT.3	64
	3.AT.4	64
	3.AT.5	66
	3.AT.6	66
M	leasurement	66
	3.M.3	66
	3.M.5	67
	3.M.6	68
	3.M.7	68
D	ata Analysis	69
	3.DA.1	69
Gra	de 4	70
Ν	umber Sense	70



	4.NS.1	70
	4.NS.4	70
	4.NS.5	71
	4.NS.7	72
	4.NS.9	72
Со	mputation	73
	4.C.1	73
	4.C.2	74
	4.C.3	74
	4.C.5	74
	4.C.6	75
Αlç	gebraic Thinking	76
	4.AT.1	76
	4.AT.3	76
	4.AT.4	77
	4.AT.5	77
Ge	ometry	78
	4.G.3	78
	4.G.4	78
Me	easurement	79
	4.M.2	79
	4.M.3	79
	4.M.4	80
	4.M.5	80
	4.M.6	81

Dat	a Analysis	81
	4.DA.2	81
Grade	- 5	82
Nur	mber Sense	82
	5.NS.1	82
	5.NS.3	82
	5.NS.4	83
	5.NS.5	84
Cor	mputation	84
	5.C.2	84
	5.C.4	85
	5.C.5	85
	5.C.8	86
	5.C.9	87
Alg	ebraic Thinking	87
	5.AT.2	87
	5.AT.3	88
	5.AT.4	89
	5.AT.6	90
	5.AT.7	90
Mea	asurement	91
	5.M.1	91
	5.M.4	91
	5.M.5	92
	5.M.6	92

Appendix	93
Classroom Resource	93
General Graphic Organizers	93
Number Sense	94
Computations and Algebraic Thinking	96
Measurement	96
Data Analysis	97
Geometry	97
Parent Portal Lessons	
Early Math PK–1	97
Istation Math 2–5	98

K–12 Standards for Mathematical Practices (MP)

As stated in the Indiana Academic Mathematics Standards, "The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all levels should seek to develop in their students." Each applicable Mathematical Practice standard is listed below the correlation with the corresponding code, MP1–8.

Mathematical Practice 1: Make sense of problems and persevere in solving them.

Mathematical Practice 2: Reason abstractly and quantitatively.

Mathematical Practice 3: Construct viable arguments and critique the reasoning of others.

Mathematical Practice 4: Model with mathematics.

Mathematical Practice 5: Use appropriate tools strategically.

Mathematical Practice 6: Attend to precision.

Mathematical Practice 7: Look for and make use of structure.

Mathematical Practice 8: Look for and express regularity in repeated reasoning.

The following legend outlines the Codes found next to each Digital Student Experience and related Teacher Resources.

Code Legend					
U	Unit				
ISIP	Istation's Indicators of Progress				
AR	Additional Resource				
CR	Classroom Resource				
FP	Fact Practice				
PP	Parent Portal				

Power Path Featured Content

Newest Features

Power Path is the next generation of activities for Istation, bringing a more modern approach to the user experience. These activities contain a greater degree of adaptability, many more questions, and a greater sense of agency for the student.

MP	1.	2.	3.	4	5.	6.	7.	8
	٠,	_,	Ο,	٠,	Ο,	Ο,	٠,	\circ

Code	Digital Student Experience	Code	Teacher Resources
K.NS.1			
		U13–15	Odd One Out - Counting
K.NS.7			
U9–11	Number Sense – Comparison Cards: Comparing Groups or Numbers	U9–11	More or Less? Which is Best?
K.NS.8			
U9–11	Number Sense – Comparison Cards: Comparing Groups or Numbers	U9–11	More or Less? Which is Best?
K.NS.11			
		U7–8	Make It, Break It
K.G.3			
U4-6	Geometry - Sweet Shapes		
1.NS.1			
		U16–17	One Hundred Twenty is Plenty
1.NS.2			
		U12–13	Two-Digit Memory

Newest Features

Power Path is the next generation of activities for Istation, bringing a more modern approach to the user experience. These activities contain a greater degree of adaptability, many more questions, and a greater sense of agency for the student.

MP 1, 2, 3, 4, 5, 6, 7, 8	MP 1.	2.	3.	4.	5.	6.	7.	8
---------------------------	-------	----	----	----	----	----	----	---

Code	Digital Student Experience	Code	Teacher Resources
1.NS.4			
U14–16	Number Sense – Comparison Cards: Comparing Two-Digit Numbers	U14–16	Dare to Compare Two-Digit Numbers
1.G.2			
U20-23	Geometry – Sweet Shapes		
2.NS.6			
		U30–31	Make It, Break It, Toss It
2.NS.7			
U33–35	Number Sense – Comparison Cards: Comparing Three-Digit Numbers	U33–35	Dare to Compare Three-Digit Numbers
3.NS.9			
U37–39	Number Sense – Pyramid Pinball: Rounding to the Nearest 10 or 100	U37–39	Round and Round We Go (Whole Numbers)
3.G.2			
			Quads Quads
4.NS.1			
U41–43	Number Sense – Comparison Cards: Comparing Multi-Digit Numbers	U41–43	Dare to Compare Multi-Digit Numbers

Newest Features

Power Path is the next generation of activities for Istation, bringing a more modern approach to the user experience. These activities contain a greater degree of adaptability, many more questions, and a greater sense of agency for the student.

MAD	1	2	2	1	_	6	7	O
MΡ	Ι,	۷,	٠o,	4,	ΰ,	Ο,	Ι,	О

Code	Digital Student Experience		Teacher Resources
4.NS.9			
U42–44	Number Sense – Pyramid Pinball: Rounding to Any Place	U42-44	Round and Round We Go (Multi-Digit) Numbers
5.NS.3			
U48–50	Number Sense – Pyramid Pinball: Rounding Decimals	U48–50	Round and Round We Go (Decimal) Numbers

Power Path Featured Content (Spanish)

Newest Features

Power Path is the next generation of activities for Istation, bringing a more modern approach to the user experience. These activities contain a greater degree of adaptability, many more questions, and a greater sense of agency for the student.

Code	Digital Student Experience	Code	Teacher Resources
K.NS.7			
U9-11	Tarjetas de comparación - Comparando grupos o números	U16–17	¿Más o menos? ¿Cuál es mejor?
K.NS.8			
		U16–17	¿Más o menos? ¿Cuál es mejor?
1.NS.4			
U14-16	Tarjetas de comparación - Comparando números de dos dígitos	U14–16	Atrévete a comparar (Números de dos dígitos)
2.NS.7			
U33-35	Tarjetas de comparación - Comparando números de tres dígitos	U33–35	Atrévete a comparar (Numéros de dígitos múltiples)
3.NS.9			
		U37–39	Dando y dando la vuelta (Números Enteros)
4.NS.9			
		U42–44	Dando y dando la vuelta (Números de dígitos múltiples)
5.NS.3			
		U48–50	Dando y dando la vuelta (Decimales)

Kindergarten

Number Sense

K.NS.1

14

Count to at least 100 by ones and tens and count on by one from any number.

Code	Digital Student Experience	Code	Teacher Resources
U14	Number Sense – "EZ with a Rock and Roll Beat" (1–100)	U14	One Hundred Is a Lot
U14	Number Sense – Identifying Numbers (1–100)	U14	Roll-Count-Cover – Skip Counting by Tens
U14	Number Sense – Identify Missing Numbers (1–100)	U21	The Arrow Says (1-100)
U14	Number Sense – Number Sequence (1–100)	U23	Decade Numbers
U14	Number Sense – "Hens by Tens" (1–100)		
U14	Number Sense – Count the Hen Amount (1–100)		
U14	Number Sense – Count to the Target Amount (1–100)		
U14	Number Sense – Choose the Correct Amount (1–100)		

K.NS.2

Write numbers from zero to 20 and recognize number words from zero to 10. Represent a number of objects with a written numeral from zero to 20 (with zero representing a count of no objects).

Code	Digital Student Experience	Code	Teacher Resources
U11	Number Sense – "Writing Our Numbers"	U6	Domino Dot Memory (1-10)
U11	Number Sense – Writing Numbers Everywhere (1–10)	U7	Counting a Scattered Static Group (1-10)
U15	Number Sense – "Pattern of the Count" (1–50)	U7	Calendar Counting (1-30)
U15	Number Sense – Place Value Rows (1–50)	U8	Counting Sticks (1-20)
U15	Number Sense – Number Puzzle (1–50)	U8	Counting Objects (1-20)
U18	Number Sense – Write to Represent Numbers (0–20)	U10	Park the Car and Write (1-20)
U19	Number Sense – "Pattern of the Count" (1–20)	U11	Writing Numbers Everywhere (5-10)
U19	Number Sense – Place Value Columns (by ones and tens to 50)	U11	Writing Numbers (10-20)
U19	Number Sense – Number Puzzle (by ones and tens to 50)	U18	Counting Memory
		ISIP	Set Stories
		ISIP	Total Amount in a Scattered Group
		ISIP	Ten Frame Puzzles (1-20)
		ISIP	Multiple Representations of Numbers (1-10)

K.NS.3

Find the number that is one more than or one less than any whole number up to 20.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		U6	Less/More/Equal Sets of Concrete Objects
		ISIP	Finding One More or One Less (1-20)
		ISIP	Comparing Groups of Objects (1-20)
		ISIP	Multiple Representations of Numbers (1-10)

K.NS.4

Say the number names in standard order when counting objects, pairing each object with one and only one number name and each number name with one and only one object. Understand that the last number describes the number of objects counted and that the number objects is the same regardless of their arrangement or the order in which they were counted.

Code	Digital Student Experience	Code	Teacher Resources
U6	Number Sense – "Counting Cattle" (1–10)	U6	Count with Me (1-20)
U6	Number Sense – Counting in a Line (1–10)	U8	Counting Sticks (1-20)
U6	Number Sense – Counting a Static Scattered Group (1–10)	U8	Counting Objects (1-20)
U6	Number Sense – Remember the Counted Amount (1–10)	ISIP	Set Stories
U7	Number Sense – "Counting Cattle" (1–10)	ISIP	Ten Frame Puzzles (1-20)

K.NS.4

Say the number names in standard order when counting objects, pairing each object with one and only one number name and each number name with one and only one object. Understand that the last number describes the number of objects counted and that the number objects is the same regardless of their arrangement or the order in which they were counted.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U7	Number Sense – Counting Fingers (1–10)	ISIP	Subitizing to Problem Solve
U7	Number Sense – Choose the Correct Amount (1–10)	ISIP	Total Amount in a Scattered Group
U7	Number Sense – Counting a Static Scattered Group (1–10)		
U8	Number Sense – "Counting Cattle" (1–20)		
U8	Number Sense – Counting in a Line (1–20)		
U8	Number Sense – Counting in an Array (1–20)		
U8	Number Sense – Counting a Scattered Static Group (1–20)		
U10	Number Sense – "Counting Cattle" (1–20)		
U10	Number Sense – Choose the Correct Amount (1–20)		
U10	Number Sense – Remember the Counted Amount (1–20)		
U10	Number Sense – Counting an Array (1–20)		
U10	Number Sense – Counting a Scattered Static Group (1–20)		

K.NS.5

Count up to 20 objects arranged in a line, a rectangular array, or a circle. Count up to 10 objects in a scattered configuration. Count out the number of objects, given a number from one to 20.

Code	Digital Student Experience	Code	Teacher Resources
U6	Number Sense – "Counting Cattle" (1–10)	U6	Count with Me (1-20)
U6	Number Sense – Counting in a Line (1–10)	U7	Counting a Scattered Static Group (1-10)
U6	Number Sense – Counting a Static Scattered Group (1–10)	U8	Counting Sticks (1-20)
U6	Number Sense – Remember the Counted Amount (1–10)	U8	Counting Objects (1-20)
U7	Number Sense – "Counting Cattle" (1–10)	ISIP	Set Stories
U7	Number Sense – Counting Fingers (1–10)	ISIP	Ten Frame Puzzles (1-20)
U7	Number Sense – Choose the Correct Amount (1–10)	ISIP	Subitizing to Problem Solve
U7	Number Sense – Counting a Static Scattered Group (1–10)	ISIP	Total Amount in a Scattered Group
U8	Number Sense – "Counting Cattle" (1–20)		
U8	Number Sense – Counting in a Line (1–20)		
U8	Number Sense – Counting in an Array (1–20)		
U8	Number Sense – Counting a Scattered Static Group (1–20)		
U10	Number Sense – "Counting Cattle" (1–20)		
U10	Number Sense – Choose the Correct Amount (1–20)		

K.NS.5

Count up to 20 objects arranged in a line, a rectangular array, or a circle. Count up to 10 objects in a scattered configuration. Count out the number of objects, given a number from one to 20.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U10	Number Sense – Remember the Counted Amount (1–20)		

K.NS.7

Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, (e.g., by using matching and counting strategies).

Code	Digital Student Experience	Code	Teacher Resources
		U6	Less/More/Equal Sets of Concrete Objects
		ISIP	Finding One More or One Less (1-20)
		ISIP	Comparing Groups of Objects (1-20)
		ISIP	Multiple Representations of Numbers (1-10)

K.NS.8

Compare two numbers between 1 and 20 presented as written numerals.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		U6	Less/More/Equal Sets of Concrete Objects
		ISIP	Finding One More or One Less (1-20)
		ISIP	Comparing Groups of Objects (1-20)
		ISIP	Multiple Representations of Numbers (1-10)

K.NS.9

Correctly use the words for comparison, including: one and many; none, some and all; more and less; most and least; and equal to, more than and less than.

Code	Digital Student Experience	Code	Teacher Resources
		U6	Less/More/Equal Sets of Concrete Objects
		ISIP	Finding One More or One Less (1-20)
		ISIP	Comparing Groups of Objects (1-20)
		ISIP	Multiple Representations of Numbers (1-10)

K.NS.11

Develop initial understanding s of place value and the base 10 number system by showing equivalent form of whole numbers from 10 to 20 as groups of tens and ones using objects and drawings.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		U15	Digit Deal (1-50)
		U18	Decomposing House with Pictures
		U18	Decomposing House

Computation and Algebraic Thinking

K.CA.1

Use objects, drawings, mental images, sounds, etc., to represent addition and subtraction within 10.

Code	Digital Student Experience	Code	Teacher Resources
U9	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1–10)	U8	Parts and Wholes
U9	Computations and Algebraic Thinking – Part Part Whole Addition within 10	U9	Roll to Find the Whole
U10	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1–10)	U10	Dogs and Cats on Mats (up to 10)
U10	Computations and Algebraic Thinking – Part Part Whole Addition Stories	U12	Ten or Not Ten

K.CA.1

Use objects, drawings, mental images, sounds, etc., to represent addition and subtraction within 10.

Code	Digital Student Experience	Code	Teacher Resources
U12	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1–10)	U13	Whole in the Hand
U12	Computations and Algebraic Thinking – Making Ten Using Tens Frames	U18	Decomposing House with Pictures
U12	Computations and Algebraic Thinking – Identifying Addends Using Tens Frames	U18	Decomposing House
U13	Computations and Algebraic Thinking – "Chicago Pizza Blues" (within 10)	U19	Relative Magnitude with Part Part Whole
U13	Computations and Algebraic Thinking – Subtraction within Ten	U20	Start, Change, Result
U14	Computations and Algebraic Thinking – "Chicago Pizza Blues" (within 10)	U20	Adding with Addend Cards
U14	Computations and Algebraic Thinking – Whole Part Part Subtraction Stories (within 10)	U22	Beading the Difference
U18	Number Sense – Decompose Numbers Less Than or Equal to Ten	ISIP	Subtraction within Ten
		ISIP	Addition Stories
		ISIP	Subtraction Stories
		ISIP	Count Back to Subtract
		ISIP	Ten Frame Addition

K.CA.2

Solve real-world problems that involve addition and subtraction within 10 (e.g., by using objects or drawings to represent the problem).

Code	Digital Student Experience	Code	Teacher Resources
U9	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1–10)	U8	Parts and Wholes
U9	Computations and Algebraic Thinking – Part Part Whole Addition within 10	U10	Dogs and Cats on Mats (up to 10)
U9	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1–10)	U12	Ten or Not Ten
U9	Computations and Algebraic Thinking – Part Part Whole Addition within 10	U18	Decomposing House with Pictures
U10	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1–10)	U18	Decomposing House
U10	Computations and Algebraic Thinking – Part Part Whole Addition Stories	U19	Relative Magnitude with Part Part Whole
U12	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1–10)	U20	Start, Change, Result
U12	Computations and Algebraic Thinking – Making Ten Using Tens Frames	U20	Adding with Addend Cards
U12	Computations and Algebraic Thinking – Identifying Addends Using Tens Frames	ISIP	Subtraction within Ten
U13	Computations and Algebraic Thinking – "Chicago Pizza Blues" (within 10)	ISIP	Addition Stories

K.CA.2

Solve real-world problems that involve addition and subtraction within 10 (e.g., by using objects or drawings to represent the problem).

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U13	Computations and Algebraic Thinking – Subtraction within Ten	ISIP	Subtraction Stories
U14	Computations and Algebraic Thinking – "Chicago Pizza Blues" (within 10)	ISIP	Count Back to Subtract
U14	Computations and Algebraic Thinking – Whole Part Part Subtraction Stories (within 10)	ISIP	Ten Frame Addition
U18	Number Sense – Decompose Numbers Less Than or Equal to Ten		

K.CA.3

Use objects, drawings, etc., to decompose numbers less than or equal to 10 into pairs in more than one way, and record each decomposition with a drawing or an equation (e.g., 5 = 2 + 3 and 5 = 4 + 1).

Code	Digital Student Experience	Code	Teacher Resources
U9	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1–10)	U8	Parts and Wholes
U9	Computations and Algebraic Thinking – Part Part Whole Addition Stories	U9	Roll to Find the Whole
U10	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1–10)	U10	Dogs and Cats on Mats (up to 10)

K.CA.3

Use objects, drawings, etc., to decompose numbers less than or equal to 10 into pairs in more than one way, and record each decomposition with a drawing or an equation (e.g., 5 = 2 + 3 and 5 = 4 + 1).

Code	Digital Student Experience	Code	Teacher Resources
U10	Computations and Algebraic Thinking – Part Part Whole Addition Stories	U12	Ten or Not Ten
U12	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1–10)	U13	Whole in the Hand
U12	Computations and Algebraic Thinking – Making Ten Using Tens Frames	U18	Decomposing House with Pictures
U12	Computations and Algebraic Thinking – Identifying Addends Using Tens Frames	U18	Decomposing House
U13	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1–10)	U19	Relative Magnitude with Part Part Whole
U13	Computations and Algebraic Thinking – Subtraction within Ten	U20	Start, Change, Result
U14	Computations and Algebraic Thinking – "Chicago Pizza Blues" (within 10)	U20	Adding with Addend Cards
U14	Computations and Algebraic Thinking – Whole Part Part Subtraction Stories (within 10)	U22	Beading the Difference
U18	Number Sense – Decompose Numbers Less Than or Equal to Ten	U8	Parts and Wholes

K.CA.4

Find the number that makes 10 when added to the given number from one to nine (e.g., by using objects or drawings), and record the answer with a drawing or equation.

Code	Digital Student Experience	Code	Teacher Resources
U9	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1–10)	U9	Roll to Find the Whole
U9	Computations and Algebraic Thinking – Part Part Whole Addition Stories	U10	Dogs and Cats on Mats (up to 10)
U10	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1–10)	U12	Ten or Not Ten
U10	Computations and Algebraic Thinking – Part Part Whole Addition Stories	U13	Whole in the Hand
U12	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1–10)	U18	Decomposing House with Pictures
U12	Computations and Algebraic Thinking – Making Ten Using Tens Frames	U18	Decomposing House
U12	Computations and Algebraic Thinking – Identifying Addends Using Tens Frames	U19	Relative Magnitude with Part Part Whole
U13	Computations and Algebraic Thinking – "Chicago Pizza Blues" (within 10)	U20	Start, Change, Result
U13	Computations and Algebraic Thinking – Subtraction within Ten	U20	Adding with Addend Cards
U14	Computations and Algebraic Thinking – "Chicago Pizza Blues" (within 10)	U22	Beading the Difference

K.CA.4

Find the number that makes 10 when added to the given number from one to nine (e.g., by using objects or drawings), and record the answer with a drawing or equation.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U14	Computations and Algebraic Thinking – Whole Part Part Subtraction Stories (within 10)		
U18	Number Sense – Decompose Numbers Less Than or Equal to Ten		

K.CA.5

Create, extend, and give an appropriate rule for simple repeating and growing patterns with numbers and shapes.

Code	Digital Student Experience	Code	Teacher Resources
U1	Computations and Algebraic Thinking – Recognize Simple, Repeating Patterns	U1	Pattern Detectives
U1	Computations and Algebraic Thinking – Replicate Simple, Repeating Patterns	ISIP	Identify the Pattern Rule, Duplicate and Extend Patterns
		ISIP	Find the Rule of a Pattern
		ISIP	Identify, Duplicate, and Extend Growing Patterns
		ISIP	Identify, Duplicate, and Extend Sequential Patterns

Geometry

K.G.2

Compare two- and three-dimensional shapes, in different sizes and orientations, using informal language to describe their similarities, differences, parts (e.g., number of sides and vertices/"corners"), and other attributes (e.g., having sides of equal length).

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U1	Geometry – Identify Circles	U1	Identifying Two-Dimensional Shapes
U1	Geometry – Identify Squares	U3	We're Going on a Shape Hunt
U3	Geometry – Identify Triangles	U9	Considering Sizes of Shapes
U9	Geometry – Identify Shapes Regardless of Orientation	U9	Mighty Shape Match
U9	Geometry - Classify and Count by Attribute	U14	Shape Four-in-a-Row
U14	Geometry – Identify Three-Dimensional Shapes		

Measurement

K.M.1

Make direct comparisons of the length, capacity, weight, and temperature of objects, and recognize which objects is shorter, longer, taller, lighter, heaver, warmer, cooler, or holds more.

Code	Digital Student Experience	Code	Teacher Resources
U10	Measurement and Data Analysis – Comparing Objects by Length	U10	Directly Comparing Length

K.M.1

Make direct comparisons of the length, capacity, weight, and temperature of objects, and recognize which objects is shorter, longer, taller, lighter, heaver, warmer, cooler, or holds more.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U10	Measurement and Data Analysis – Comparing Objects by Weight	U10	Directly Comparing Weight
U15	Measurement and Data Analysis – Comparing Objects by Height	U15	Directly Comparing Height
U15	Measurement and Data Analysis – Comparing Objects by Capacity	U15	Which Holds More? Which Holds Less?

Data Analysis

K.DA.1

Identify, sort and classify objects by size, number, and other attributes. Identify objects that do not belong to a particular group and explain the reasoning used.

Code	Digital Student Experience	Code	Teacher Resources
		U12	Classify and Compare
		U19	Graphing Tic-Tac-Toe

Grade 1

Number Sense

1.NS.1

30

Count to at least 120 by ones, fives and tens from any given number. In this range, read and write numerals and represent a number of objects with a written numeral.

Code	Digital Student Experience	Code	Teacher Resources
U17	Number Sense – "Pattern of the Count" Count by Ones to 100	U14	One Hundred Is a Lot
U17	Number Sense – Place Value Rows (1–100)	U17	Digit Deal (1-100)
U17	Number Sense – Number Puzzle (1–100)	U18	Mixed-Up, Fixed-Up
U21	Number Sense – "Pattern of the Count" Count by Ones and Tens to 100	U21	The Arrow Says (1-100)
U21	Number Sense – Place Value Columns (1–100)	U23	Decade Numbers
U21	Number Sense – Number Puzzle (1–100)		

1.NS.2

Understand that a 10 can be thought of as a bundle of ten ones – called a "ten." Understand that the numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones. Understand that the numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones).

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U23	Number Sense – Decade Numbers: Free Play Number Puzzle	U14	Roll-Count-Cover – Skip Counting by Tens
U23	Number Sense – Decade Numbers: Number Puzzle	U15	Digit Deal (1-50)
		U17	Digit Deal (1-100)
		U23	Decade Numbers
		ISIP	Base Ten Block Basics
		ISIP	Matching Numerals and Base Ten Blocks
		ISIP	Base Ten Block Comparison Game

1.NS.4

Use place value understanding to compare two two-digitnumbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols >, =, and <.

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Base Ten Block Basics
		ISIP	Matching Numerals and Base Ten Blocks

1.NS.4

Use place value understanding to compare two two-digitnumbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols >, =, and <.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Base Ten Block Comparison Game
		ISIP	Graphing Stories – Determining Most and Least

1.NS.6

Show equivalent forms of whole numbers as groups of tens and ones, and understand that the individual digits of a two-digit number represent amounts of tens and ones.

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Matching Numerals and Base Ten Blocks
		ISIP	Base Ten Block Comparison Game

Computation and Algebraic Thinking

1.CA.1

Demonstrate fluency with addition facts and the corresponding subtraction facts within 20. Use strategies such as counting on; making ten (e.g., 8+6=8+2+4=10+4=14); decomposing a number leading to a ten (e.g., 13-4=13-3-1=10-1=9); using the relationship between addition and subtraction (e.g., knowing that 8+4=12, one knows 12-8=4); and creating equivalent but easier or known sums (e.g., adding 6+7 by creating the known equivalent 6+6+1=12+1=13). understand the role of 0 in addition and subtraction.

Code	Digital Student Experience	Code	Teacher Resources
U10	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1–20)	U10	Dogs and Cats on Mats (up to Ten)
U10	Computations and Algebraic Thinking – Addition Stories	U12	Ten or Not Ten
U12	Computations and Algebraic Thinking – Identifying Addends using Tens Frames	U13	Whole in the Hand
U20	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1–20)	U20	Turn Around Addition
U20	Computations and Algebraic Thinking – Addition Stories (horizontal orientation)	U20	Grouping Groceries
U20	Computations and Algebraic Thinking – Addition Stories (vertical orientation)	U20	Identity Property Go Fish!
U20	Computations and Algebraic Thinking – "The Math Whiz"	U20	Doubles Facts
U20	Computations and Algebraic Thinking – Fact Strategies	FP	Addition Fast Track
U20	Computations and Algebraic Thinking – Commutative Property	FP	Sticky Sums
U20	Computations and Algebraic Thinking – Associative Property	FP	Write, Tally, Draw

1.CA.1

Demonstrate fluency with addition facts and the corresponding subtraction facts within 20. Use strategies such as counting on; making ten (e.g., 8+6=8+2+4=10+4=14); decomposing a number leading to a ten (e.g., 13-4=13-3-1=10-1=9); using the relationship between addition and subtraction (e.g., knowing that 8+4=12, one knows 12-8=4); and creating equivalent but easier or known sums (e.g., adding 6+7 by creating the known equivalent 6+6+1=12+1=13). understand the role of 0 in addition and subtraction.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U20	Computations and Algebraic Thinking – Identity Property	FP	Shake It, Make It, Solve It (Addition)
U10	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1–20)	FP	Wipe Out
U10	Computations and Algebraic Thinking – Addition Stories		

1.CA.2

Solve real-world problems involving addition and subtraction within 20 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts and the addition or subtraction problem (e.g., by using objects, drawing and equations with a symbol for the unknown number to represent the problem.)

Code	Digital Student Experience	Code	Teacher Resources
U16	Computations and Algebraic Thinking – Determine Missing Addend	U16	Beginning-Middle-End
U19	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1–20)	U18	Decomposing House
U19	Computations and Algebraic Thinking – Part Part Whole Using Ovals	U19	Decomposing House with Pictures

1.CA.2

Solve real-world problems involving addition and subtraction within 20 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts and the addition or subtraction problem (e.g., by using objects, drawing and equations with a symbol for the unknown number to represent the problem.)

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U19	Computations and Algebraic Thinking – Part Part Whole Using Ten Frames	U22	Beading the Difference
U20	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1–20)	U24	Mystery in the Middle
U20	Computations and Algebraic Thinking – Addition Stories (1–20) Horizontal Equations	U24	Start, Change, Result (within 20)
U20	Computations and Algebraic Thinking – Addition Stories (1–20) Vertical Equations		
U22	Computations and Algebraic Thinking – Whole Part Part "Chicago Pizza Blues" (within 20)		
U22	Computations and Algebraic Thinking – Whole Part Part (within 20)		
U24	Computations and Algebraic Thinking – Subtraction Stories (within 20)		
U24	Computations and Algebraic Thinking – Determine the Unknown Whole Numbers in Subtraction Sentences		

1.CA.4

Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20 (e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem).

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U16	Computations and Algebraic Thinking – Determine the Unknown Whole Numbers in Addition Sentences	U16	Beginning-Middle-End
U20	Computations and Algebraic Thinking – Properties of Addition – Associative Property	U22	Beading the Difference
		U22	Mystery in the Middle
		ISIP	Associative Property of Addition
		ISIP	Commutative Property of Addition

1.CA.5

Add within 100, including adding a two-digitnumber and a one-digitnumber, and adding a two-digitnumber and a multiple of 10, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding two-digitnumbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten.

Code	Digital Student Experience	Code	Teacher Resources
U20	Computations and Algebraic Thinking – "The Math Whiz"	U20	Doubles Facts
U20	Computations and Algebraic Thinking – Fact Strategies	U20	Turn Around Addition
U20	Computations and Algebraic Thinking – Commutative Property	U20	Grouping Groceries

1.CA.5

Add within 100, including adding a two-digitnumber and a one-digitnumber, and adding a two-digitnumber and a multiple of 10, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding two-digitnumbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U20	Computations and Algebraic Thinking – Associative Property	U20	Identity Property Go Fish!
U20	Computations and Algebraic Thinking – Identity Property	U24	Start, Change, Result! (within 20)
		ISIP	Fact Family Dominoes
		FP	Addition Fast Track
		FP	Subtraction Fast Track
		FP	Sticky Sums
		FP	Write, Tally, Draw
		FP	Shake It, Make It, Solve It (Addition)
		FP	Wipe Out
		FP	Building Sums to Ten

Geometry

1.G.2

Distinguish between defining attributes of two- and three-dimensional shapes (e.g., triangles are closed and three-sided) versus non-defining attributes (e.g., color, orientation, overall size). Create and draw two-dimensional shapes with defining attributes.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		U14	Shape Four-in-a-Row

1.G.4

Partition circles and rectangles into two and four equal parts; describe the parts using the words halves, fourths, and quarters; and use the phrases half of, fourth of, and quarter of. Describe the whole as two of, or four of the parts. Understand for partitioning circles and rectangles into two and four equal parts that decomposing into equal parts creates similar parts.

Code	Digital Student Experience	Code	Teacher Resources
U18	Geometry – Identify Halves and Fourths	U18	Fraction Four-in-a-Row

Measurement

1.M.2

Tell and write time to the nearest half-hour and relate time to events (before/after, shorter/longer) using analog clocks. Understand how to read hours and minutes using digital clocks.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U16	Measurement and Data Analysis – Tell Time to the Nearest Hour	U16	What Does the Clock Say?
U16	Measurement and Data Analysis – Tell and Write Time from Analog and Digital Clock to the Nearest Half Hour	U16	Roll the Clock
U19	Measurement and Data Analysis – Tell and Write Time from Analog/Digital Clocks to the Nearest Hour and Half Hour	U19	Set the Time and Go!

1.M.3

Identify the value of a penny, nickel, dime, and a collection of pennies, nickels, and dimes.

Code	Digital Student Experience	Code	Teacher Resources
U14	Measurement and Data Analysis – Identify Coins by Value	U12	Coin Name Cover-Up
U16	Measurement and Data Analysis – Identify the Value of a Collection of Mixed Coins	U14	Coin Value Cover Up
U16	Measurement and Data Analysis – Compare Amounts of Mixed Coins	U16	Money War

1.M.3

Identify the value of a penny, nickel, dime, and a collection of pennies, nickels, and dimes.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U24	Measurement and Data Analysis – Compare Amounts of Mixed Coins with Given Amounts of Money	U16	Money Match
		U24	Enough Money?

Data Analysis

1.DA.1

Organize and interpret data with up to three choices (What is your favorite fruit? apples, bananas, oranges); ask and answer questions about the total number of data points, how many in ach choice, and how many more or less in one choice compared to another.

Code	Digital Student Experience	Code	Teacher Resources
		U19	Graphing Tic-Tac-Toe
		ISIP	Picture Graphs to the Rescue!
		ISIP	Analyze and Add Using Picture Graphs
		ISIP	Graphing Three Ways
		ISIP	Determining Most and Least with Graphs
		ISIP	Read and Analyze Bar Graphs

Grade 2

Number Sense

2.NS.2

Read and write whole numbers to 1,000. Use words, models, standard form and expanded form to represent and show equivalent forms of whole numbers up to 1,000.

Code	Digital Student Experience	Code	Teacher Resources
U30	Number Sense – Writing Standard Form from Expanded Form	U30	Building Numbers Using Base Ten Blocks
U30	Number Sense – Writing Expanded Form from Standard Form	U30	Writing Expanded Form from Standard Form
U30	Number Sense – Writing Word Form from Expanded and Standard Form	U30	Writing Word Form from Expanded and Standard Form
		ISIP	Equivalent Representations
		ISIP	Build a Base Ten Cube
		ISIP	Creating Numbers with Base Ten Blocks
		ISIP	Expanded Form Place Value Cups
		ISIP	Writing Standard Form from Expanded Form

Determine whether a group of objects (up to 20) has an odd or even number of members, (e.g., by placing that number of objects in two groups of the same size and recognizing that for even numbers no object will be left over and for odd numbers one objects will be left over, or by pairing objects or counting them by 2s).

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U30	Computations and Algebraic Thinking – Even and Odd Pairing	U30	Determining Even and Odd by Pairing

2.NS.6

Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones (e.g., 706 equals 7 hundreds, 0 tens, and 6 ones). Understand that 100 can be thought of as a bundle of ten tens – called a "hundred." Understand that the numbers 100, 200, 300, 400, 500, 600, 700, 800, 900 refer to one, two, three, four, five, six, seven, eight or nine hundreds (and 0 tens and 0 ones).

Code	Digital Student Experience	Code	Teacher Resources
U30	Number Sense – Writing Standard Form from Expanded Form	U30	Building Numbers Using Base Ten Blocks
U30	Number Sense – Writing Expanded Form from Standard Form	U30	Writing Expanded Form from Standard Form
U30	Number Sense – Writing Word Form from Expanded and Standard Form	U30	Writing Word Form from Expanded and Standard Form
		ISIP	Equivalent Representations
		ISIP	Build a Base Ten Cube
		ISIP	Creating Numbers with Base Ten Blocks

Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones (e.g., 706 equals 7 hundreds, 0 tens, and 6 ones). Understand that 100 can be thought of as a bundle of ten tens – called a "hundred." Understand that the numbers 100, 200, 300, 400, 500, 600, 700, 800, 900 refer to one, two, three, four, five, six, seven, eight or nine hundreds (and 0 tens and 0 ones).

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Expanded Form Place Value Cups
		ISIP	Writing Standard Form from Expanded Form

2.NS.7

Use place value understanding to compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits, using >, =, and < symbols to record the results of comparisons.

Code	Digital Student Experience	Code	Teacher Resources
U30	Number Sense – Comparing Two Two-Digit Whole Numbers	U30	Comparison – Two-Digit Numbers: Language and Symbols
U30	Number Sense – Comparing Two Three-Digit Numbers	U30	Comparison – Three–Digit Numbers
U30	Number Sense – Comparing Two Three-Digit Whole Numbers with Zeroes	ISIP	Steps for Comparing Three–Digit Numbers
		ISIP	Building and Comparing Three-Digit numbers

Computation and Algebraic Thinking

2.CA.1

Add and subtract fluently within 100.

Code	Digital Student Experience	Code	Teacher Resources
U31	Computations and Algebraic Thinking – Adding with Regrouping Using Concrete Models	U31	Adding with Regrouping – Concrete
U31	Computations and Algebraic Thinking – Subtracting with Regrouping Using Concrete Models	U31	Addition Using Partitioning
U31	Computations and Algebraic Thinking – Adding with Regrouping – Partitioning	U31	Subtraction Using Partitioning
U31	Computations and Algebraic Thinking – Subtracting with Regrouping – Partitioning	U31	Adding on a Number Line
U31	Computations and Algebraic Thinking – Adding on a Number Line	U31	Subtracting on a Number Line
U31	Computations and Algebraic Thinking – Subtracting on a Number Line	U31	Fact Families – Addition and Subtraction
U31	Computations and Algebraic Thinking – Fact Families – Addition and Subtraction	ISIP	Partitioning for Addition
		ISIP	Using Arrow Paths to Add and Subtract
		FP	Fact Family Dominos (Addition/Subtraction)
		FP	Addition Fast Track
		FP	Subtraction Fast Track

2.CA.1

Add and subtract fluently within 100.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		FP	Left Hand, Right Hand Grab Bag
		FP	Shake It! Make It! Solve It! Addition
		FP	Sticky Sums
		FP	Wipe Out
		FP	Write, Tally, Draw

2.CA.2

solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems.

Code	Digital Student Experience	Code	Teacher Resources
U32	Computations and Algebraic Thinking – Two-Step Word Problems with Unknowns at the End	U32	Build and Solve Two-Step Equations with Addition and Subtraction
U32	Computations and Algebraic Thinking – Two-Step Word Problems with Unknowns in the Middle	U32	Build Multistep Equations with Multiple Operations
		U32	Solve Multistep Equations with Multiple Operations

2.CA.4

Add and subtract within 1000, using models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; describe the strategy and explain the reasoning used. Understand that in adding or subtracting three-digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones; and sometimes it is necessary to compose or decompose tens or hundreds.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U32	Computations and Algebraic Thinking – Two-Step Word Problems with Unknowns at the End	U32	Build Multistep Equations
U32	Computations and Algebraic Thinking – Two-Step Word Problems with Unknowns in the Middle	U32	Build and Solve Two-Step Equations with Addition and Subtraction
		U32	Build Multistep Equations with Multiple Operations
		U32	Solve Multistep Equations
		ISIP	Choosing the Operation

2.CA.5

Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns; write an equation to express the total as a sum of equal addends.

Code	Digital Student Experience	Code	Teacher Resources
U32	Computations and Algebraic Thinking – Addition Arrays	U32	Addition Arrays

Istation Math Curriculum Correlated to the Indiana Academic Mathematic Standards

2.CA.6

Show that the order in which two numbers are added (commutative property) and how the numbers are grouped in addition (associative property) will not change the sum. These properties can be used to show that numbers can be added in an order.

Code	Digital Student Experience	Code	Teacher Resources
U31	Computations and Algebraic Thinking – Adding with Regrouping Using Concrete Models	U31	Adding with Regrouping – Concrete
U31	Computations and Algebraic Thinking – Subtracting with Regrouping Using Concrete Models	U31	Addition Using Partitioning
U31	Computations and Algebraic Thinking – Adding with Regrouping – Partitioning	U31	Subtraction Using Partitioning
U31	Computations and Algebraic Thinking – Subtracting with Regrouping – Partitioning	U31	Adding on a Number Line
U31	Computations and Algebraic Thinking – Adding on a Number Line	U31	Subtracting on a Number Line
U31	Computations and Algebraic Thinking – Subtracting on a Number Line	U31	Fact Families – Addition and Subtraction
U31	Computations and Algebraic Thinking – Fact Families – Addition and Subtraction	ISIP	Partitioning for Addition
		ISIP	Using Arrow Paths to Add and Subtract
		FP	Fact Family Dominos (Addition/Subtraction)
		FP	Addition Fast Track
		FP	Subtraction Fast Track
		FP	Left Hand, Right Hand Grab Bag

2.CA.6

Show that the order in which two numbers are added (commutative property) and how the numbers are grouped in addition (associative property) will not change the sum. These properties can be used to show that numbers can be added in an order.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		FP	Shake It! Make It! Solve It! Addition
		FP	Sticky Sums
		FP	Wipe Out
		FP	Write, Tally, Draw

Geometry

2.G.4

Partition a rectangle into rows and columns of same-size (unit) squares and count to find the total number of same-size squares.

Code	Digital Student Experience	Code	Teacher Resources
U32	Geometry – Addition Arrays	U32	Addition Arrays

2.G.5

Partition circles and rectangles into two, three, or four equal parts; describe the shares using the words *halves, thirds, half of, a third of,* etc.; and describe the whole as two halves, three thirds, four fourths. Recognize that equal parts of identical wholes need not have the same shape.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U32	Geometry – Partitioning to Identify Halves, Thirds, and Fourths	U32	Equal Shares of Identical Wholes
U32	Geometry – Equal Shares of Identical Wholes		

Measurement

2.M.2

Estimate and measure the length of an object by selecting and using appropriate tools such as rulers, yardsticks, meter sticks, and measuring tapes to the nearest inch, foot, yard, centimeter and meter.

Code	Digital Student Experience	Code	Teacher Resources
U33	Measurement – Choose Units and Measure Lengths	U33	Choosing Units of Linear Measurement
U33	Measurement – Measure to the Nearest Centimeter	U33	Measure to the Nearest Inch
		U33	Measure to the Nearest Centimeter
		ISIP	Appropriate Tools for Linear Measurement
		ISIP	How to Use Linear Measurement Tools
		ISIP	Measuring Objects

2.M.2

Estimate and measure the length of an object by selecting and using appropriate tools such as rulers, yardsticks, meter sticks, and measuring tapes to the nearest inch, foot, yard, centimeter and meter.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Ruler Relay

2.M.3

Understand that the length of an object does not change regardless of the units used. Measure the length of an object twice using length units of different lengths for the two measurements. Describe how the two measurements relate to the size of the unit chosen.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Unit Relationships

2.M.5

Tell and write time to the nearest five minutes from analog clocks, using a.m. and p.m. Solve real-world problems involving addition and subtraction of time intervals on the hour or half hour.

Code	Digital Student Experience	Code	Teacher Resources
U34	Measurement – Tell Time to the Nearest Five Minutes	U34	Time to the Nearest Five Minutes
		U34	Time – AM and PM
		U34	Time to the Quarter Hour

2.M.7

Find the value of a collection of pennies, nickels, dimes, quarters and dollars.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		U32	Money Word Problems

Data Analysis

2.DA.1

Draw a picture graph (with a single-unit scale) and a bar graph (with single-unit scale) to represent a data set with up to four choices (Which is your favorite color? red, blue, yellow, green). Solve simple put-together, take-apart, and compare problems using information presented in a graph.

Code	Digital Student Experience	Code	Teacher Resources
U33	Data Analysis – Solving Problems Using Information Presented in Picture Graphs	U33	Creating Picture Graphs
U33	Data Analysis – Solving Problems Using Information Presented in Bar Graphs	U33	Interpreting Picture Graphs
		U33	Analyzing Picture Graphs
		U33	Creating Bar Graphs
		U33	Interpreting Bar Graphs
		U33	Analyzing Bar Graphs

Grade 3

Number Sense

3.NS.3

Understand a fraction, 1/b, as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a/b as the quantity formed by a parts and size 1/b.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Recognizing Fractions in Different Forms
		ISIP	Writing Fractions Using Symbolic Notation

3.NS.4

Represent a fraction, 1/b, on a number line diagram by defining the interval from 0 to 1 as the whole, and partitioning it into b equal parts. Recognize that each part has size 1/b and that the endpoint of the part based at 0 locates the number 1/b on the number line.

Code	Digital Student Experience	Code	Teacher Resources
U37	Number Sense – Equivalent Fractions	U37	Fractions Equivalent to One
U37	Number Sense – Fractions Equivalent to One	U37	Fractions Equivalent to Whole Numbers
U37	Number Sense – Many Equivalent Fractions	U37	Mixed Fractions on a Number Line
		U37	Many Equivalent Fractions
		U37	Identifying Equivalent Fractions

Represent a fraction, a/b, on a number line diagram by marking off a lengths 1/b from 0. Recognize that the resulting interval has size a/b, and that its endpoint locates the number a/b on the number line.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U37	Number Sense – Equivalent Fractions	U37	Fractions Equivalent to One
U37	Number Sense – Fractions Equivalent to One	U37	Fractions Equivalent to Whole Numbers
U37	Number Sense – Many Equivalent Fractions	U37	Mixed Fractions on a Number Line
		U37	Many Equivalent Fractions
		U37	Identifying Equivalent Fractions

3.NS.6

Understand two fractions as equivalent (equal) if they are the same size, based on the same whole or the same point on a number line.

Code	Digital Student Experience	Code	Teacher Resources
U37	Number Sense – Equivalent Fractions	U37	Fractions Equivalent to One
U37	Number Sense – Fractions Equivalent to One	U37	Many Equivalent Fractions
U37	Number Sense – Many Equivalent Fractions	U37	Fractions Equivalent to Whole Numbers
U37	Number Sense – Fractions Equivalent to Whole Numbers	U37	Comparison – Fractions and Whole Numbers – Symbols
U37	Number Sense – Mixed Numbers	U37	Comparing Fractions with Like Numerators

Understand two fractions as equivalent (equal) if they are the same size, based on the same whole or the same point on a number line.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U37	Number Sense – Comparing Fractions with the Same Denominator	U37	Identify Equivalent Fractions
U37	Number Sense – Comparing Fractions with the Same Numerator	ISIP	Comparing Fractions Using Models
		ISIP	Comparing Fractions
		ISIP	Identify Equivalent Fractions Using Area Models
		ISIP	Recognizing Fractions in Different Forms
		ISIP	Writing Fractions Using Symbolic Notation

3.NS.7

Recognize and generate simple equivalent fractions, (e.g., 1/2 = 2/4, 4/6 = 2/3). Explain why the fractions are equivalent, (e.g., by using a visual fraction model).

Code	Digital Student Experience	Code	Teacher Resources
U37	Number Sense – Equivalent Fractions	U37	Fractions Equivalent to One
U37	Number Sense – Fractions Equivalent to One	U37	Many Equivalent Fractions
U37	Number Sense – Many Equivalent Fractions	U37	Fractions Equivalent to Whole Numbers

Recognize and generate simple equivalent fractions, (e.g., 1/2 = 2/4, 4/6 = 2/3). Explain why the fractions are equivalent, (e.g., by using a visual fraction model).

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U37	Number Sense – Fractions Equivalent to Whole Numbers	U37	Comparison – Fractions and Whole Numbers – Symbols
U37	Number Sense – Mixed Numbers	U37	Comparing Fractions with Like Numerators
U37	Number Sense – Comparing Fractions with the Same Denominator	U37	Identify Equivalent Fractions
U37	Number Sense – Comparing Fractions with the Same Numerator	ISIP	Comparing Fractions Using Models
		ISIP	Comparing Fractions
		ISIP	Identify Equivalent Fractions Using Area Models
		ISIP	Recognizing Fractions in Different Forms
		ISIP	Writing Fractions Using Symbolic Notation

3.NS.8

Compare two fractions with the same numerator or the same denominator by reasoning about their size based on the same whole. Record the results with the symbols >, =, or <, and justify the conclusions, (e.g., by using a visual fraction model).

Code	Digital Student Experience	Code	Teacher Resources
U37	Number Sense – Equivalent Fractions	U37	Fractions Equivalent to One

Compare two fractions with the same numerator or the same denominator by reasoning about their size based on the same whole. Record the results with the symbols >, =, or <, and justify the conclusions, (e.g., by using a visual fraction model).

Code	Digital Student Experience	Code	Teacher Resources
U37	Number Sense – Fractions Equivalent to One	U37	Many Equivalent Fractions
U37	Number Sense – Many Equivalent Fractions	U37	Fractions Equivalent to Whole Numbers
U37	Number Sense – Fractions Equivalent to Whole Numbers	U37	Comparison – Fractions and Whole Numbers – Symbols
U37	Number Sense – Mixed Numbers	U37	Comparing Fractions with Like Numerators
U37	Number Sense – Comparing Fractions with the Same Denominator	U37	Identify Equivalent Fractions
U37	Number Sense – Comparing Fractions with the Same Numerator	ISIP	Comparing Fractions Using Models
		ISIP	Comparing Fractions
		ISIP	Identify Equivalent Fractions Using Area Models
		ISIP	Recognizing Fractions in Different Forms
		ISIP	Writing Fractions Using Symbolic Notation

Use place value understanding to round 2- and 3-digit whole numbers to the nearest 10 or 100.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U35	Number Sense – Rounding to the Nearest Ten	U35	Rounding – Nearest Ten
U35	Number Sense – Rounding to the Nearest Hundred	U35	Rounding – Nearest Hundred
		U35	Rounding – Nearest Ten, Hundred, Thousand

Computation

3.C.1

Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.

Code	Digital Student Experience	Code	Teacher Resources
U36	Computations and Algebraic Thinking – Two-Step Word Problems – All Operations	U36	Build and Solve Two-Step Equations with All Operations

Represent the concept of multiplication of whole numbers with the following models: equal-sized groups, arrays, area models, and equal "jumps" on a number line. understand the properties of 0 and 1 in multiplication.

Code	Digital Student Experience	Code	Teacher Resources
U35	Computations and Algebraic Thinking – Arithmetic Patterns in Multiplication	U35	Arithmetic Patterns in Multiplication
U36	Computations and Algebraic Thinking – Multiply One-Digit Numbers Using Concrete Models	U36	One-Digit by One-Digit Multiplication
U36	Computations and Algebraic Thinking – Multiply One-Digit Numbers Using 1×1 Arrays	U36	Multiplying Two One-Digit Numbers with Arrays
		U36	Problem Solving without Numbers
		ISIP	Practicing Fact Families
		ISIP	Using Strip Diagrams to Solve Compare Problems
		FP	Multominoes
		FP	Tall Towers
		FP	Dice Blocks
		FP	Wipe Out
		FP	Sticky Products
		FP	Multiplication Fast Track
		FP	Shake It! Make It! Solve It! (Multiplication)

Represent the concept of division of whole numbers with the following models: partitioning, sharing, and an inverse of multiplication. Understand the properties of 0 and 1 in division.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U36	Computations and Algebraic Thinking – Multiplication and Division Fact Families	U36	Fact Families: Multiplication and Division
		ISIP	Doubling and Halving
		ISIP	Relating Multiplication and Division
		FP	Division Fast Track
		FP	Dice Blocks
		FP	Wipe Out

3.C.4

Interpret whole-number quotients of whole numbers, (e.g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each).

Code	Digital Student Experience	Code	Teacher Resources
U36	Computations and Algebraic Thinking – Multiplication and Division Fact Families	U36	Fact Families: Multiplication and Division
		ISIP	Doubling and Halving
		ISIP	Relating Multiplication and Division

Multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5 = 40$, one knows $40 \div 5 = 8$), or properties of operations.

Code	Digital Student Experience	Code	Teacher Resources
U35	Computations and Algebraic Thinking – Arithmetic Patterns in Multiplication	U35	Arithmetic Patterns in Multiplication
U36	Computations and Algebraic Thinking – Multiply One-Digit Numbers Using Concrete Models	U36	One-Digit by One-Digit Multiplication
U36	Computations and Algebraic Thinking – Fact Families – Multiplication and Division	U36	Multiplying Two One-Digit Numbers with Arrays
U36	Computations and Algebraic Thinking – Two-Step Word Problems – All Operations	U36	Build and Solve Two-Step Equations with All Operations
U36	Computations and Algebraic Thinking – Properties of Multiplication	U36	Fact Families: Multiplication and Division
		ISIP	Doubling and Halving
		ISIP	Relating Multiplication and Division
		ISIP	Practicing Fact Families
		ISIP	Using Strip Diagrams to Solve Compare Problems
		ISIP	Commutative Property of Multiplication
		ISIP	Doubling and Halving
		FP	Wipe Out
		FP	Multominoes

Multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5 = 40$, one knows $40 \div 5 = 8$), or properties of operations.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		FP	Tall Towers
		FP	Dice Blocks
		FP	Sticky Products
		FP	Multiplication Fast Track
		FP	Division Fast Track
		FP	Shake It! Make It! Solve It! (Multiplication)

3.C.6

Demonstrate fluency with mastery of multiplication facts and corresponding division facts of 0 to 10.

Code	Digital Student Experience	Code	Teacher Resources
U35	Computations and Algebraic Thinking – Arithmetic Patterns in Multiplication	U35	Arithmetic Patterns in Multiplication
U36	Computations and Algebraic Thinking – Multiply One-Digit Numbers Using Concrete Models	U36	One-Digit by One-Digit Multiplication
U36	Computations and Algebraic Thinking – Fact Families – Multiplication and Division	U36	Multiplying Two One-Digit Numbers with Arrays

Demonstrate fluency with mastery of multiplication facts and corresponding division facts of 0 to 10.

Code	Digital Student Experience	Code	Teacher Resources
U36	Computations and Algebraic Thinking – Two-Step Word Problems – All Operations	U36	Build and Solve Two-Step Equations with All Operations
U36	Computations and Algebraic Thinking – Properties of Multiplication	U36	Fact Families: Multiplication and Division
		ISIP	Doubling and Halving
		ISIP	Relating Multiplication and Division
		ISIP	Practicing Fact Families
		ISIP	Using Strip Diagrams to Solve Compare Problems
		ISIP	Commutative Property of Multiplication
		ISIP	Doubling and Halving
		FP	Wipe Out
		FP	Multominoes
		FP	Tall Towers
		FP	Dice Blocks
		FP	Sticky Products
		FP	Multiplication Fast Track
		FP	Division Fast Track

Demonstrate fluency with mastery of multiplication facts and corresponding division facts of 0 to 10.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		FP	Shake It! Make It! Solve It! (Multiplication)

Algebraic Thinking

3.AT.2

Solve real-world problems involving whole number multiplication and division within 100 in situations involving equal groups, arrays and measurement quantities (e.g., by using drawings and equations with a symbol for the unkno9wn number to represent the problems).

Code	Digital Student Experience	Code	Teacher Resources
U36	Computations and Algebraic Thinking – Build and Solve Two-Step Equations with All Operations	U36	Build and Solve Two-Step Equations with All Operations
		ISIP	Doubling and Halving
		ISIP	Problem Solving without Numbers: Multiplication and Division
		ISIP	Practicing Fact Families
		ISIP	Using Strip Diagrams to Solve Compare Problems

3.AT.3

Solve two-step word problems using the four operations of addition, subtraction, ultiplication and division (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U36	Computations and Algebraic Thinking – Two-Step Word Problems – All Operations	U35	Addition Problem-Solving Strategies
		U35	Subtraction Problem-Solving Strategies
		U35	Problem Solving without Numbers: Addition and Subtraction
		U36	Build and Solve Two-Step Equations with All Operations
		U36	Problem Solving without Numbers: Multiplication and Division

3.AT.4

Interpret a multiplication equations equal groups (e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each). Represent verbal statements of equal groups as multiplication equations.

Code	Digital Student Experience	Code	Teacher Resources
U35	Computations and Algebraic Thinking – Arithmetic Patterns in Multiplication	U35	Arithmetic Patterns in Multiplication
U36	Computations and Algebraic Thinking – Multiply One-Digit Numbers Using Concrete Models	U36	One-Digit by One-Digit Multiplication

3.AT.4

Interpret a multiplication equations equal groups (e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each). Represent verbal statements of equal groups as multiplication equations.

Code	Digital Student Experience	Code	Teacher Resources
U36	Computations and Algebraic Thinking – Multiply One-Digit Numbers Using 1×1 Arrays	U36	Multiplying Two One-Digit Numbers with Arrays
		U36	Problem Solving without Numbers
		ISIP	Practicing Fact Families
		ISIP	Using Strip Diagrams to Solve Compare Problems
		FP	Multominoes
		FP	Tall Towers
		FP	Dice Blocks
		FP	Wipe Out
		FP	Sticky Products
		FP	Multiplication Fast Track
		FP	Shake It! Make It! Solve It! (Multiplication)

3.AT.5

Determine the unknown whole number in a multiplication or division equation relating three whole numbers.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U36	Computations and Algebraic Thinking – Build and Solve Two-Step Equations with All Operations	U36	Build and Solve Two-Step Equations with All Operations

3.AT.6

Create, extend and give an appropriate rule for number patterns within 100 (including patters in the addition table or multiplication table).

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U35	Computations and Algebraic Thinking – Arithmetic Patterns in Multiplication	U35	Arithmetic Patterns in Multiplication

Measurement

3.M.3

Tell and write time to the nearest minute from analog clocks, using a.m. and p.m. and measure time intervals in minutes. solve real-world problems involving addition and subtraction of time interval in minutes.

Code	Digital Student Experience	Code	Teacher Resources
U39	Measurement and Data Analysis – Elapsed Time on a Number Line	U39	Elapsed Time within One Hour

3.M.3

Tell and write time to the nearest minute from analog clocks, using a.m. and p.m. and measure time intervals in minutes. solve real-world problems involving addition and subtraction of time interval in minutes.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		U39	Elapsed Time Across Hours

3.M.5

Find the area of a rectangle with whole number side lengths by modeling with unit squares, and show that the area is the same as would be found by multiplying the side lengths. Identify and draw rectangles with the same perimeter and different areas or with the same area and different perimeters.

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Areas of Squares
		ISIP	Finding the Area of Squares
		ISIP	Finding the Area of Polygons
		FP	Multominoes

3.M.6

Multiply side lengths to find areas of rectangles with whole-number side lengths to solve real-world problems and other mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Areas of Squares
		ISIP	Finding the Area of Squares
		ISIP	Finding the Area of Polygons
		FP	Multominoes

3.M.7

Find perimeters of polygons given the side lengths or given an unknown side length.

Code	Digital Student Experience	Code	Teacher Resources
U38	Measurement – Perimeter Word Problems	U38	Finding Perimeter
		U38	Finding Missing Side Lengths in Word Problems
		ISIP	Measuring Perimeter of Polygons

Data Analysis

3.DA.1

Create scaled picture graphs, scaled bar graphs and frequency tables to represent a data set-including data collected through observations, surveys, and experiments- with several categories. Solve one-and twostep "how many more" and "how many less" problems regarding the data and make predictions based on the data.

Code	Digital Student Experience	Code	Teacher Resources
U39	Measurement and Data Analysis – Two-Step Word Problems with Bar Graphs	U39	Solving Two–Step Problems Using Bar Graphs

Grade 4

Number Sense

4.NS.1

Read and write whole number whole numbers up to 1,000,000. Use words, models, standard form and expanded form to represent and show equivalent forms of whole numbers up to 1,000,000.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U40	Number Sense – Expanded Form to Thousands	U40	Writing Expanded Form from Standard through Thousands and Millions
U40	Number Sense – Expanded Form to Millions	U40	Writing Standard Form from Expanded through Thousands and Millions
U40	Number Sense – Writing Expanded Form from Standard Form through Millions	U40	Writing Word Form from Expanded and Standard through Thousands and Millions

4.NS.4

Explain why a fraction a/b is equivalent to fraction $(n \times a)/(n \times b)$, by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.

Code	Digital Student Experience	Code	Teacher Resources
U43	Number Sense – Determine Equivalent Fractions with Models	U43	Fraction Comparison Using Benchmark Fractions
U43	Number Sense – Comparing Fractions Using Benchmark Fractions	U43	Compare Fractions- Symbols

Explain why a fraction a/b is equivalent to fraction $(n \times a)/(n \times b)$, by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U43	Number Sense – Compare Fractions Using Symbols	U43	Compare Fractions by Creating Common Denominators
		ISIP	Comparing Fractions
		ISIP	Using Area Models to Compare Fractions

4.NS.5

Compare two fractions with different numerators and different denominators, (e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as 0, $\frac{1}{2}$, and 1). Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, =, or <, and justify the conclusions (e.g., by using a visual fraction model).

Code	Digital Student Experience	Code	Teacher Resources
U43	Number Sense – Comparing Fractions Using Benchmark Fractions	U43	Fraction Comparison Using Benchmark Fractions
U43	Number Sense – Comparing Fractions with Unlike Denominators	U43	Compare Fractions Using Symbols
		U43	Compare Fractions by Creating Common Denominators
		ISIP	Comparing Fractions
		ISIP	Using Area Models to Compare Fractions

Compare two decimals to hundredths by reasoning about their size based on the same whole. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with symbols >, =, or <, and justify the conclusions, (e.g., by using a visual model).

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U43	Number Sense – Understanding Decimals (0.1–0.9 and 0.01–0.09)	U43	Standard and Word Form of Decimals (0.01-0.09 and 0.1-0.9)
U43	Number Sense – Understanding Decimals 0.1–0.9	U43	Standard and Word form of Decimals (0.10-0.90)
U43	Number Sense – Understanding Decimals with Visual Models 0.01–1.99	U43	Standard and Word form of Decimals (0.01-1.99)
		ISIP	Comparing and Ordering Decimals

4.NS.9

Use place value understanding to round multi-digit whole numbers to any given place-value.

Code	Digital Student Experience	Code	Teacher Resources
U40	Number Sense – Rounding to the Nearest Thousand	U40	Rounding – Nearest Thousand
U40	Number Sense – Round to Any Place up to Thousands with Number Line	U40	Rounding – Nearest Ten, Hundred, Thousand
U40	Number Sense – Round to Any Place up to Thousands with Algorithm	U40	Rounding within Three- and Four-Digit Numbers – Number Line

4.NS.9

Use place value understanding to round multi-digit whole numbers to any given place-value.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U40	Number Sense – Rounding Zero	U40	Rounding within Three- and Four-Digit Numbers – Abstract
		U40	Zero as the Rounding Digit

Computation

4.C.1

Add and subtract multi-digit whole numbers fluently using the standard algorithmic approach.

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Adding Multi-Digit Numbers and Checking for Reasonableness

Multiply a whole number of up to four digits by a one-digit whole number and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Describe the strategy and explain the reasoning.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U41	Computations and Algebraic Thinking – Multiply Two-Digit Numbers with Models	U41	Two-Digit by Two-Digit Concrete Multiplication

4.C.3

Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations and/or the relationship between multiplication and division. Describe the strategy and explain the reasoning.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U41	Computations and Algebraic Thinking – Multiply Two-Digit Numbers with Models	U41	Two-Digit by Two-Digit Concrete Multiplication

4.C.5

Add and subtract fractions with common denominators. Decompose a fraction into a sum of fractions with the common denominators. Understand addition and subtraction as combining and separating parts referring to the same whole.

Code	Digital Student Experience	Code	Teacher Resources
U43	Number Sense – Decomposing Fractions	U43	Add Like Denominators of Ten and One Hundred

4.C.5

Add and subtract fractions with common denominators. Decompose a fraction into a sum of fractions with the common denominators. Understand addition and subtraction as combining and separating parts referring to the same whole.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U43	Number Sense – Adding Fractions with Like Denominators of Ten and One Hundred	U43	Adding Denominators of Ten to Denominators of One Hundred
U43	Number Sense – Adding Fractions with Denominators of Ten and One Hundred		

4.C.6

Add and subtract fractions with common denominators, (e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction).

Code	Digital Student Experience	Code	Teacher Resources
U43	Number Sense – Decomposing Fractions	U43	Add Like Denominators of Ten and One Hundred
U43	Number Sense – Adding Fractions with Like Denominators of Ten and One Hundred	U43	Adding Denominators of Ten to Denominators of One Hundred
U43	Number Sense – Adding Fractions with Denominators of Ten and One Hundred		

Algebraic Thinking

4.AT.1

Solve real-world problems involving addition and subtraction of multi-digit whole numbers (e.g., buy using drawings and equations with a symbol for the unknown number to represent the problem).

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U42	Computations and Algebraic Thinking – Solve Multistep Word Problems	U42	Building and Solving Multistep Equations with All Operations
		ISIP	Using Multiplication to Solve If-Then Word Problems

4.AT.3

Interpret a multiplication equation as a comparison, (e.g., interpret $35 = 5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5). Represent verbal statements of multiplicative comparisons as multiplication equations.

Code	Digital Student Experience	Code	Teacher Resources
U42	Computations and Algebraic Thinking – Solve Multistep Word Problems	U42	Building and Solving Multistep Equations with All Operations

4.AT.4

Solve real-world problems with whole numbers involving multiplicative comparison (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem), distinguishing multiplicative comparison from additive comparison.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U42	Computations and Algebraic Thinking – Solve Multistep Word Problems	U42	Building and Solving Multistep Equations with All Operations
		ISIP	Using Multiplication to Solve If-Then Word Problems

4.AT.5

Solve word problems involving addition and subtraction of fractions referring to the same whole and having common denominators, (e.g., by using visual fraction models and equations to represent the problem).

Code	Digital Student Experience	Code	Teacher Resources
U43	Number Sense – Decomposing Fractions	U43	Add Like Denominators of Ten and One Hundred
U43	Number Sense – Adding Fractions with Like Denominators of Ten and One Hundred	U43	Adding Denominators of Ten to Denominators of One Hundred
U43	Number Sense – Adding Fractions with Denominators of Ten and One Hundred		

Geometry

4.G.3

Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U45	Geometry – Measuring Angles with a Protractor	U45	Measuring Angles with a Protractor
		ISIP	Line and Angle Identification

4.G.4

Identify, describe, and draw rays, angles (right, acute, obtuse), and perpendicular and parallel lines using appropriate tools (e.g., ruler, straightedge and technology.) Identify these in two-dimensional figures.

Code	Digital Student Experience	Code	Teacher Resources
U45	Geometry – Measuring Angles with a Protractor	U45	Measuring Angles with a Protractor
		ISIP	Line and Angle Identification

Measurement

4.M.2

Know relative sizes of measurement units within one system of units including km, m, cm, and mm; kg, g; lb., oz.; l, ml; hr, min, sec. Express measurements in a larger unit in terms of a smaller unit within a single system of measurement. Record measurement equivalents in a two-column table.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U44	Measurement and Data Analysis – Word Problems with Various Measurements	U44	Converting Units of Measurement in Word Problems

4.M.3

Use the four operations to solve real-world problems involving distances, intervals of time, volumes, masses of objects, and money. Include addition and subtraction problems involving simple fractions and problems that require expressing measurements given in a larger unit it terms of a smaller unit.

Code	Digital Student Experience	Code	Teacher Resources
U44	Measurement and Data Analysis – Word Problems with Various Measurements	U44	Converting Units of Measurement in Word Problems
		ISIP	Measuring Length to the Nearest Quarter Inch
		ISIP	Calculating Elapsed Time

4.M.4

Apply the area and perimeter formulas for rectangles to solve real-world and other mathematical problems. Recognize area as additive and find the area of complex shapes composed of rectangles by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts; apply this technique to solve real-world problems and other mathematical problems.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Finding Area of Rectangles and Squares by Using Multiplication
		ISIP	Quantifying Areas of Rectangles and Squares
		ISIP	Connecting Multiplication and Area
		ISIP	Decomposing Figures to Find the Area of Polygons

4.M.5

Understand that angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. Understand an angle that turns through 1/360 of a circle is called a "one-degree angle," and can be used to measure angles. Understand an angle that turns through n one-degree angles is said to have an angle measure of n degrees.

Code	Digital Student Experience	Code	Teacher Resources
U45	Geometry – Measuring Angles with a Protractor	U45	Measuring Angles with a Protractor
		ISIP	Line and Angle Identification

4.M.6

Measure angles in whole-number degrees using appropriate tools. Sketch angles of specified measure.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U45	Geometry – Measuring Angles with a Protractor	U45	Measuring Angles with a Protractor
		ISIP	Line and Angle Identification

Data Analysis

4.DA.2

Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Solve problems involving addition and subtraction of fractions by using information presented in line plots.

Code	Digital Student Experience	Code	Teacher Resources
U45	Data Analysis – Line Plots with Fractional Data	U45	Line Plots with Fractional Data
U45	Data Analysis – Analyzing Line Plots	U45	Finding Scales of Line Plots

Grade 5

Number Sense

5.NS.1

Use a number line to compare and order fractions, mixed numbers, and decimals to thousandths Write the results using, using >, =, and < symbols.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U46	Number Sense – Compare Decimals Visually on the Number Line	U46	Decimal Grids and Place Value Mats
U46	Number Sense – Compare Tenths and Hundredths on a Number Line	U46	Decimal Comparison on the Number Line
U46	Number Sense – Compare Tenths and Hundredths (with visual aids)	U46	Abstract Decimal Comparison
U46	Number Sense – Abstract Comparison of Decimals to Thousandths	U46	Decimals with Whole Number Comparison

5.NS.3

Recognize the relationship that in a multi-digit, a digit in one place represents 10 times as much as it represents in the place to its right and inversely 1/10 of what it represents in the place to its left.

Code	Digital Student Experience	Code	Teacher Resources
U46	Number Sense – Multiplying Decimals by Ten and One Hundred	U46	Multiplying Decimals by Ten and One Hundred

5.NS.3

Recognize the relationship that in a multi-digit, a digit in one place represents 10 times as much as it represents in the place to its right and inversely 1/10 of what it represents in the place to its left.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U46	Number Sense – Dividing Decimals by Ten and One Hundred	U46	Dividing Decimals by Ten and One Hundred
U46	Number Sense – Exploring Powers of Ten	U46	Multiplying and Dividing Decimals by Powers of Ten
U46	Number Sense – Multiplying and Dividing Decimals by Powers of Ten	U46	Exploring Powers of Ten

5.NS.4

83

Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole number exponents to denote powers of 10.

Code	Digital Student Experience	Code	Teacher Resources
U46	Number Sense – Multiplying Decimals by Ten and One Hundred	U46	Multiplying Decimals by Ten and One Hundred
U46	Number Sense – Dividing Decimals by Ten and One Hundred	U46	Dividing Decimals by Ten and One Hundred
U46	Number Sense – Exploring Powers of Ten	U46	Multiplying and Dividing Decimals by Powers of Ten
U46	Number Sense – Multiplying and Dividing Decimals by Powers of Ten	U46	Exploring Powers of Ten

5.NS.5

Use place value understanding to round decimals numbers up to thousandths to any given place value.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U46	Number Sense – Round Decimals on the Number Line	U46	Rounding Decimals on the Number Line
U46	Number Sense – Round Decimals with the Rounding Algorithm	U46	Rounding Decimals with the Rounding Algorithm
U46	Number Sense – Round Decimals with Whole Numbers		

Computation

5.C.2

Find whole number quotients and remainders with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Describe the strategy and explain the reasoning used.

Code	Digital Student Experience	Code	Teacher Resources
U47	Computations and Algebraic Thinking – Divide Three-Digit by Two-Digit Numbers with an Area Model	U47	Four-Digit by Two-Digit Division (Partial Quotients)
U47	Computations and Algebraic Thinking – Divide Four-Digit Numbers by Two-Digit Numbers	ISIP	Estimating Quotients Using Compatible Numbers
		ISIP	Using Models to Practice Extended Division Facts
		ISIP	Models for Understanding Remainders

Add and subtract fractions with unlike denominators including mixed numbers.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U48	Computations and Algebraic Thinking – Add Fractions with Unlike Denominators	U48	Adding Fractions with Unlike Denominators
U48	Computations and Algebraic Thinking – Subtract Fractions with Unlike Denominators	ISIP	Adding and Subtracting Fractions with Unlike Denominators

5.C.5

Use visual fraction models and numbers to multiply a fraction by a fraction or a whole number.

Code	Digital Student Experience	Code	Teacher Resources
U48	Computations and Algebraic Thinking – Multiply Fractions with Improper Fractions	U48	Multiplying by Fractions Less Than One
		U48	Multiplying by Fractions Less Than One (Extra Practice)
		U48	Multiplying Fractions Less Than One with Improper Fractions
		U48	Multiplying Whole Numbers by Fractions Greater Than One

Add, subtract, multiply, and divide decimals to hundredths, using models or drawings and strategies based on place value or the properties of operations. Describe the strategy and explain the reasoning.

Code	Digital Student Experience	Code	Teacher Resources
U46	Computations and Algebraic Thinking – Visual Representation for Multiplying Decimals	U46	Multiplying Decimals by Ten and One Hundred
U46	Computations and Algebraic Thinking – Multiply Decimals by Powers of Ten	U46	Dividing Decimals by Ten and One Hundred
U46	Computations and Algebraic Thinking – Divide Decimals by Powers of Ten	U46	Multiplying and Dividing Decimals by Powers of Ten
U46	Computations and Algebraic Thinking – Multiply and Divide Decimals by Powers of Ten	U47	Decimal Addition
		U47	Decimal Subtraction
		U47	Concrete Decimal Division
		U47	Representational Decimal Division
		U47	Decimal Division
		ISIP	Calculating Reasonable Estimates of Decimal Number Sums
		ISIP	Adding and Subtracting Decimal Numbers in a Word Problem

Evaluate expression with parentheses or brackets involving whole numbers using the commutative properties of addition and multiplication, associative properties of addition and multiplication, and distributive property.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U49	Computations and Algebraic Reasoning – Evaluate Numerical Expressions with Parentheses	U49	Evaluating Numerical Expressions with Parentheses
U49	Computations and Algebraic Reasoning – Interpret Numerical Expressions with Parentheses	U49	Identifying Expressions in Scenarios
U49	Computations and Algebraic Reasoning – Write Numerical Expressions from Words	U49	Writing Expressions from Words – Addition and Subtraction
		U49	Writing Expressions from Words – Subtraction

Algebraic Thinking

5.AT.2

Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, (e.g., by using visual fraction models and equations to represent the problem). Use benchmark fractions and number sense of fractions to estimate mentally and assess whether the answer is reasonable.

Code	Digital Student Experience	Code	Teacher Resources
U48	Computations and Algebraic Thinking – Add Fractions with Unlike Denominators	U48	Adding Fractions with Unlike Denominators
U48	Computations and Algebraic Thinking – Subtract Fractions with Unlike Denominators	U48	Subtracting Fractions with Unlike Denominators

5.AT.2

Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, (e.g., by using visual fraction models and equations to represent the problem). Use benchmark fractions and number sense of fractions to estimate mentally and assess whether the answer is reasonable.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Adding and Subtracting Fractions with Unlike Denominators

5.AT.3

Solve real-world problems involving multiplication of fractions, including mixed numbers (e.g., by using visual fraction models and equations to represent the problem.)

Code	Digital Student Experience	Code	Teacher Resources
U47	Computations and Algebraic Thinking – Divide Three-Digit by Two-Digit Numbers with an Area Model	U47	Four-Digit by Two-Digit Division (Partial Quotients)
U47	Computations and Algebraic Thinking – Divide Four-Digit Numbers by Two-Digit Numbers	ISIP	Estimating Quotients Using Compatible Numbers
		ISIP	Using Models to Practice Extended Division Facts
		ISIP	Models for Understanding Remainders

5.AT.4

Solve real-world problems involving addition, subtraction, multiplication, and division with decimals to hundredths, including problems that involve3 money in decimal notation (e.g., by using equations, models or drawings and strategies based on place value or properties of operations to represent the problem).

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U46	Computations and Algebraic Thinking – Visual Representation for Multiplying Decimals	U46	Multiplying Decimals by Ten and One Hundred
U46	Computations and Algebraic Thinking – Multiply Decimals by Powers of Ten	U46	Dividing Decimals by Ten and One Hundred
U46	Computations and Algebraic Thinking – Divide Decimals by Powers of Ten	U46	Multiplying and Dividing Decimals by Powers of Ten
U46	Computations and Algebraic Thinking – Multiply and Divide Decimals by Powers of Ten	U47	Decimal Addition
		U47	Decimal Subtraction
		U47	Concrete Decimal Division
		U47	Representational Decimal Division
		U47	Decimal Division
		ISIP	Calculating Reasonable Estimates of Decimal Number Sums
		ISIP	Adding and Subtracting Decimal Numbers in a Word Problem

5.AT.6

graph points with whole number coordinates on a coordinate plane. Explain how the coordinates relate the point as the distance from the origin on each axis, with the convention tht the names of the two axes and the coordinates correspond (e.g., x-axis and x-coordinate, y-axis and y-coordinate).

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U51	Geometry – Graph Points in a Coordinate Plane	U51	Plotting Points on a Coordinate Grid
		ISIP	Identifying and Plotting Ordered Pairs on the Coordinate Plane

5.AT.7

Represent real-world and equations by graphing ordered in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.

Code	Digital Student Experience	Code	Teacher Resources
U51	Computations and Algebraic Thinking – Comparing Points on a Coordinate Plan	U51	Graphing and Analyzing Lines
		ISIP	Identifying and Plotting Ordered Pairs on the Coordinate Plane

Measurement

5.M.1

Convert among different-sized standard measurement units within a given measurement system and use these conversions in solving multistep, real world problems.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Converting Standard Units of Measurement
		ISIP	Performing Customary Measurement Conversions

5.M.4

Find the volume of a right rectangular prism with whole number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths or multiplying the height by the area of the base.

Code	Digital Student Experience	Code	Teacher Resources
U50	Measurement and Data Analysis – Volume of Irregular Figures	U50	Volume of Rectangular Prisms
		U50	Volume of Irregular Figures
		ISIP	Integrating Fact Practice and Volume

5.M.5

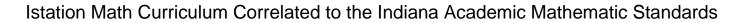
Apply the formulas $V = \ell \times w \times h$ and $V = B \times h$ for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real-world and other mathematical problems.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U50	Measurement and Data Analysis – Volume of Irregular Figures	U50	Volume of Rectangular Prisms
		U50	Volume of Irregular Figures
		ISIP	Integrating Fact Practice and Volume

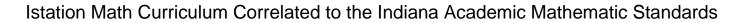
5.M.6

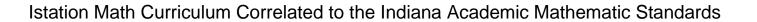
Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real-world problems and other mathematical problems.


Code	Digital Student Experience	Code	Teacher Resources
U50	Measurement and Data Analysis – Volume of Irregular Figures	U50	Volume of Rectangular Prisms
		U50	Volume of Irregular Figures
		ISIP	Integrating Fact Practice and Volume

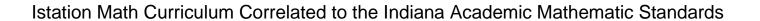
Appendix

Classroom Resource


Genera	al Graphic Organizers
Code	Teacher Resources
CR	Dot Paper
CR	Frayer Model
CR	Frayer Model (multiple)
CR	Grid Paper
CR	Grid Paper (cm)
CR	Grid Paper (in)
CR	If-Then Diagram (Large)
CR	If-Then Diagrams
CR	Multiple Number Lines (10–100)
CR	Number Cards (1–10)
CR	Number Cards (1–20)
CR	Number Line 0–10 (Labeled and Blank)
CR	Number Line 0–100 (Labeled and Blank)
CR	Number Line 0–20 (Labeled and Blank)
CR	Number Line 0–50 (Labeled and Blank)

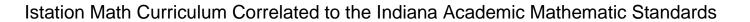

General Graphic Organizers		
Code	Teacher Resources	
CR	Place Value Mat: 3-Column (Blank)	
CR	Place Value Mat: 4-Column (Blank)	
CR	Ten Frame	
CR	Three-Digit Number Cards	
CR	Types of Word Problems Anchor Chart	

Number Sense		
Code	Teacher Resources	
CR	100 Chart	
CR	120 Chart	
CR	Base Ten Block Cards (0–50)	
CR	Base Ten Block Cards (Multiples of Ten)	
CR	Counting Strips (1–10)	
CR	Counting Strips (1–20)	
CR	Decimal Cards	
CR	Decimal Grid: Thousandths	
CR	Decimal Grids: Tenths and Hundredths	
CR	Decimal Models: One Whole Through Thousandths	


Number Sense		
Code	Teacher Resources	
CR	Decimal Place Value: Grid and Chart – Hundredths	
CR	Decimal Place Value: Grid and Chart – Tenths	
CR	Decimal Place Value: Grid and Chart – Thousandths	
CR	Even and Odd Chart	
CR	Fraction Bars	
CR	Fraction Equivalency Cards	
CR	Fraction Model Graphic Organizer	
CR	Multiple Representations of Numbers (1–10)	
CR	Place Value Anchor Chart: Tens and Ones	
CR	Place Value Mat: Multiple Representations to Millions (Labeled)	
CR	Place Value Mat: Multiple Representations to Thousands (Labels)	
CR	Place Value Mat: Tens and Ones (Labeled)	
CR	Place Value Word Cards	
CR	Ten Frame Dot Cards (Large)	
CR	Ten Frame Dot Cards (Small)	

Computations and Algebraic Thinking		
Code	Teacher Resources	
CR	Algebra Tiles	
CR	Algebraic Strip Diagrams	
CR	Coordinate Plane	
CR	Missing Factor Cards	
CR	Multiplication/Division Fact Family Template	
CR	Operation Symbol Cards	
CR	Part Part Whole Mat	
CR	Problem Solving Cards – Addition and Subtraction	
CR	Subitizing Cards (1–5)	

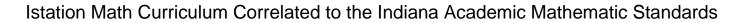
Measurement		
Code	Resources	
CR	Customary Unit Conversion Cards – Linear Measurement	
CR	Customary Unit Conversion Cards – Liquid Measurement	
CR	Linear Measurement Bundle (Includes the following five resources)	
CR	Linear Measurement Anchor Chart	
CR	Linear Measurement Body Benchmarks Anchor Chart	
CR	Linear Measurement Graphic Organizer	

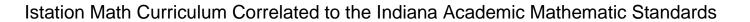

Measurement		
Code	Resources	
CR	Linear Measurement Steps Anchor Chart	
CR	Linear Measurement Yards vs. Meters Anchor Chart	

Data Analysis		
Code	Teacher Resources	
CR	Analyzing Line Plots	

Geometry		
Code	Teacher Resources	
CR	Three-Dimensional Figure Nets	
CR	Two-Dimensional Shapes	

Parent Portal Lessons


Early Math PK-1		
Code	Teacher Resources	
PP	Fact Practice: Addition Fast Track	
PP	Fact Practice: Addition Road Racing	
PP	Fact Practice: Building Sums with Dice	


Early Math PK-1		
Code	Teacher Resources	
PP	Fact Practice: Choose the Operation (Addition and Subtraction)	
PP	Fact Practice: Counting to Answer Math Questions	
PP	Fact Practice: Matching Numerals to Quantities	
PP	Fact Practice: Recognizing, Ordering and Counting	
PP	Fact Practice: Shake It! Make It! Solve It! (Addition)	
PP	Fact Practice: Skip Counting Raceway (Skip Counting by Fives and Tens)	
PP	Fact Practice: Skip Counting Raceway (Skip Counting by Twos)	
PP	Fact Practice: Sticky Sums	
PP	Fact Practice: Subtraction Fast Track	
PP	Fact Practice: Subtraction Road Racing	
PP	Fact Practice: Write, Tally, Dray (Addition)	
PP	Practice Sorting by Attributes	

Istation Math 2–5		
Code	Teacher Resources	
PP	Fact Practice: Adding on a Number Line	
PP	Fact Practice: Addition and Subtraction Fact Families	
PP	Fact Practice: Choose the Operation (Addition and Subtraction)	

Istation	Math 2–5
Code	Teacher Resources
PP	Fact Practice: Choose the Operation (Multiplication and Division)
PP	Fact Practice: Fact Family Dominoes (Addition/Subtraction)
PP	Fact Practice: Identifying Halves, Thirds, Fourths
PP	Fact Practice: Multiplication and Division Fact Family Triangles
PP	Fact Practice: Multiplication Fast Track
PP	Fact Practice: Multiply Then Add
PP	Fact Practice: Multominoes
PP	Fact Practice: Shake It! Make It! Solve It! (Multiplication)
PP	Fact Practice: Sticky Products
PP	Fact Practice: Subtracting on a number Line
PP	Fact Practice: Two-Digit Comparison: Who Has More?
PP	Fact Practice: Two-Digit Comparison: Who Has Less?
PP	Fact Practice: Three- and Four-Digit Comparison: Who Has More?
PP	Fact Practice: Three- and Four-Digit Comparison: Who Has Less?
PP	Fact Practice: Understanding Decimal Numbers
PP	Fact Practice: Write, Expand, Sketch
PP	Fact Practice: Writing Expressions from Scenarios

Istation Math 2–5		
Code	Teacher Resources	
PP	Practice Linear Measurement Scavenger Hunt (Centimeter)	
PP	Practice Linear Measurement Scavenger Hunt (Inches)	
PP	Practice Plotting Points on a Coordinate Plane	