

Istation

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

Kindergarten - Grade 5

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

Contents

Power Path Featured Content 13
Newest Features 13
Power Path Featured Content (Spanish) 16
Newest Features 16
Kindergarten 18
NUMBER: Students will communicate number sense concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines. 18
Numeric Relationships: students will demonstrate, represent, and show relationships among whole numbers within the base-ten number system. 18
MA 0.1.1.a 18
MA 0.1.1.b 19
MA 0.1.1.c 20
MA 0.1.1.d 22
MA 0.1.1.e 23
MA 0.1.1.f. 24
MA 0.1.1.h 26
MA 0.1.1.j 26
MA 0.1.1.g 27
ALGEBRA: Students will communicate algebraic concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines 29
Algebraic Relationships: Students will demonstrate, represent, and show relationships with expressions and equations. 29
MA 0.2.1.a 29
MA 0.2.1.b 31
Applications: Students will solve real-world problems involving addition and subtraction. 32

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

MA 0.2.3.a... 32
GEOMETRY: Students will communicate geometric concepts and measurement concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines. 34
Characteristics: Students will identify and describe geometric characteristics and create two- and three-dimensional shapes 34
MA 0.3.1.a 34
MA 0.3.1.b 34
MA 0.3.1.c 35
Measurement: Students will perform and compare measurements and apply formulas 35
MA 0.3.3.a 35
MA 0.3.3.b 36
DATA: Students will communicate data analysis/probability concepts using multiple representations to reason, solve problems, andmake connections within mathematics and across disciplines.37
Analysis \& Applications: Students will analyze data to address the situation. 37
MA 0.4.2.a 37
Grade 1 38
NUMBER: Students will communicate number sense concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines. 38
Numeric Relationships: Students will demonstrate, represent, and show relationships among whole numbers within the base-ten number system. 38
MA 1.1.1.a 38
MA 1.1.1.b 39
MA 1.1.1.c 39
MA 1.1.1.d 40
MA 1.1.1.e 41
MA 1.1.1.f 42
Operations: Students will demonstrate the meaning of addition and subtraction with whole numbers and compute accurately... 42

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

MA 1.1.2.e
42
ALGEBRA: Students will communicate algebraic concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines 44
Algebraic Relationships: Students will demonstrate, represent, and show relationships with expressions and equations. 44
MA 1.2.1.b 44
MA 1.2.1.c 45
MA 1.2.1.d 45
Algebraic Processes: Students will apply the operational properties when adding and subtracting 46
MA 1.2.2.a 46
MA 1.2.3.a 47
MA 1.2.3.b 49
GEOMETRY: Students will communicate geometric concepts and measurement concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines. 50
Characteristics: Students will identify and describe geometric characteristics and create two and three-dimensional shapes 50
MA 1.3.1.a 50
MA 1.3.1.b 50
MA 1.3.3.a 51
MA 1.3.3.b 51
DATA: Students will communicate data analysis/probability concepts using multiple representations to reason, solve problems, andmake connections within mathematics and across disciplines52
Representations: Students will create displays that represent data. 52
MA 1.4.1.a 52
Analysis \& Applications: Students will analyze data to address the situation 52
MA 1.4.2.a 52
Grade 2 54

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

NUMBER: Students will communicate number sense concepts using multiple representations to reason, solve problems, and make
connections within mathematics and across disciplines. Represent and solve problems involving addition and subtraction 54
Numeric Relationships: Students will demonstrate, represent, and show relationships among whole numbers within the base-ten number system 54
MA 2.1.1.b 54
MA 2.1.1.c 55
MA 2.1.1.d 56
MA 2.1.1.e 57
Operations: Students will demonstrate the meaning of addition and subtraction with whole numbers and compute accurately.. 57
MA 2.1.2.a 57
MA 2.1.2.b 58
MA 2.1.2.e 60
MA 2.1.2.f 61
ALGEBRA: Students will communicate algebraic concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines 61
Algebraic Relationships: Students will demonstrate, represent, and show relationships with expressions and equations. 61
MA 2.2.1.a 61
Applications: Students will solve real-world problems involving addition and subtraction 62
2.2.3.a 62
2.2.3.b 62
GEOMETRY: Students will communicate geometric concepts and measurement concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines. 63
Characteristics: Students will identify and describe geometric characteristics and create two and three-dimensional shapes 63
MA 2.3.1.b 63
MA 2.3.1.c 63
MA 2.3.1.d 64
Istation Math Curriculum Correlated to the Nebraska Mathematics Standards
Measurement: Students will perform and compare measurements and apply formulas 64
MA 2.3.3.a 64
MA 2.3.3.b 64
MA 2.3.3.c 65
MA 2.3.3.d 66
MA 2.3.3.f 66
MA 2.3.3.g 66
DATA: Students will communicate data analysis/probability concepts using multiple representations to reason, solve problems, andmake connections within mathematics and across disciplines.67
Representations: Students will create displays that represent data. 67
MA 2.4.1.a 67
Analysis \& Applications: Students will analyze data to address the situation 68
MA 2.4.1.b 68
Grade 3 69
NUMBER: Students will communicate number sense concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines. 69
Numeric Relationships: Students will demonstrate, represent, and show relationships among whole numbers and simple fractions within the base-ten number system. 69
MA 3.1.1.c 69
MA 3.1.1.d 69
MA 3.1.1.e 70
MA 3.1.1.f 70
MA 3.1.1.g 71
MA 3.1.1.i 72
Operations: Students will demonstrate the meaning of multiplication and division with whole numbers and compute accurately. 73 73
MA 3.1.2.a 73

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

MA 3.1.2.c 73
MA 3.1.2.f. 74
MA 3.1.2.g 74
MA 3.1.2.h 76
ALGEBRA: Students will communicate algebraic concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines 77
Algebraic Relationships: Students will demonstrate, represent, and show relationships with expressions and equations. 77
MA 3.2.1.a. 77
Algebraic Processes: Student will apply the operational properties when multiplying and dividing. 77
MA 3.2.2.a 77
MA 3.2.2.b 78
Applications: Students will solve real-world problems involving equations with whole numbers. 78
MA 3.2.3.a 78
MA 3.2.3.b 79
GEOMETRY: Students will communicate geometric concepts and measurement concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines. 80
Characteristics: Students will identify and describe geometric characteristics and create two and three-dimensional shapes 80
MA 3.3.1.a 80
MA 3.3.1.b 80
MA 3.3.1.c 81
Measurement: Students will perform and compare measurements and apply formulas 81
MA 3.3.3.a 81
MA 3.3.3.b 82
MA 3.3.3.c 82
MA 3.3.3.f 82

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

MA 3.3.3.g.. 83
MA 3.3.3.h... 83
DATA: Students will communicate data analysis/probability concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines. ... 84
Representations: Students will create displays that represent data.. 84
MA 3.4.1.a.. 84
Analysis \& Applications: Students will analyze data to address the situation.. 85
MA 3.4.2.a... 85
Grade 4... 86
NUMBER: Students will communicate number sense concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines... 86
Numeric Relationships: Students will demonstrate, represent, and show relationships among fractions and decimals within the
base-ten number system.. 86
MA 4.1.1.a... 86
MA 4.1.1.b... 86
MA 4.1.1.f.. 87
MA 4.1.1.g.. 87
MA 4.1.1.h.. 88
MA 4.1.1.k... 89
MA 4.1.1.I.. 89
Operations: Students will demonstrate the meaning of addition and subtraction of whole numbers and fractions and compute
accurately.. 90
MA 4.1.2.a.. 90
MA 4.1.2.c .. 90
MA 4.1.2.e... 90
MA 4.1.2.f... 91

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

MA 4.1.2.h
92
ALGEBRA: Students will communicate algebraic concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines 92
Applications: Students will solve real-world problems involving equations with fractions. 92
MA 4.2.2.a 92
MA 4.2.3.a 93
MA 4.2.3.b 93
GEOMETRY: Students will communicate geometric concepts and measurement concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines. 94
Characteristics: Students will identify and describe geometric characteristics and create two and three-dimensional shapes 94
MA 4.3.1.a 94
MA 4.3.1.b 94
MA 4.3.1.c 95
MA 4.3.1.f 95
MA 4.3.1.g 95
Measurement: Students will perform and compare measurements and apply formulas. 96
MA 4.3.3.a 96
MA 4.3.3.b 96
MA 4.3.3.c 97
DATA: Students will communicate data analysis/probability concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines 97
Representations: Students will create displays that represent data. 97
MA 4.4.1.a 97
Analysis \& Applications: Students will analyze data to address the situation. 98
MA 4.4.1.a 98
Grade 5 99

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

NUMBER: Students will communicate number sense concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines. 99
Numeric Relationships: Students will demonstrate, represent, and show relationships among whole numbers, fractions, and decimals within the base-ten number system 99
MA 5.1.1.a 99
MA 5.1.1.b 100
MA 5.1.1.c 100
MA 5.1.1.e 101
Operations: Students will demonstrate the meaning of operations and compute accurately with whole numbers, fractions, and decimals 101
MA 5.1.1.b 101
MA 5.1.1.c 102
MA 5.1.1.d 103
MA 5.1.2.g 104
MA 5.1.2.h 105
MA 5.2.1.i 105
MA 5.1.2.j 106
ALGEBRA: Students will communicate algebraic concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines 106
Algebraic Relationships: Students will demonstrate, represent, and show relationships with expressions and equations 106
MA 5.2.1.a 106
Algebraic Processes: Students will apply the operational properties when evaluating expressions and solving equations 107
MA 5.2.2.a 107
MA 5.2.3.a 107
GEOMETRY: Students will communicate geometric concepts and measurement concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines. 108

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

Characteristics: Students will identify and describe geometric characteristics and create two and three-dimensional shapes... 108
MA 5.3.1.C.. 108
Coordinate Geometry: Students will determine location, orientation, and relationships on the coordinate plane. 109
MA 5.3.2.a.. 109
MA 5.3.2.b... 109
Measurement: Students will perform and compare measurements and apply formulas. ... 110
MA 5.3.3.a... 110
MA 5.3.3.b.. 110
MA 5.3.3.c ... 111
Appendix... 112
Classroom Resource ... 112
General Graphic Organizers.. 112
Number Sense ... 113
Computations and Algebraic Thinking ... 115
Measurement .. 115
Data Analysis .. 116
Geometry ... 116
Parent Portal Lessons .. 116
Early Math PK-1 ... 116
Istation Math 2-5... 117

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

K-12 Standards for Mathematical Practices (MP)
As stated in the Nebraska Mathematics Standards, "The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all levels should seek to develop in their students." Each applicable Mathematical Practice standard is listed below the correlation with the corresponding code, MP1-8.
Mathematical Practice 1: Make sense of problems and persevere in solving them.
Mathematical Practice 2: Reason abstractly and quantitatively.
Mathematical Practice 3: Construct viable arguments and critique the reasoning of others.
Mathematical Practice 4: Model with mathematics.
Mathematical Practice 5: Use appropriate tools strategically.
Mathematical Practice 6: Attend to precision.
Mathematical Practice 7: Look for and make use of structure.
Mathematical Practice 8: Look for and express regularity in repeated reasoning.
The following legend outlines the Codes found next to each Digital Student Experience and related Teacher Resources.

Code Legend	
U	Unit
ISIP	Istation's Indicators of Progress
AR	Additional Resource
CR	Classroom Resource
FP	Fact Practice
PP	Parent Portal

Power Path Featured Content

Newest Features			
Power Path is the next generation of activities for Istation, bringing a more modern approach to the user experience. These activities contain a greater degree of adaptability, many more questions, and a greater sense of agency for the student.			
MP 1, 2, 3, 4, 5, 6, 7, 8			
Code	Digital Student Experience	Code	Teacher Resources
MA 0.1.1.a			
		U13-15	Odd One Out - Counting
MA 0.1.1.h			
U9-11	Number Sense - Comparison Cards: Comparing Groups or Numbers	U9-11	More or Less? Which is Best?
MA 0.1.1.j			
U9-11	Number Sense - Comparison Cards: Comparing Groups or Numbers	U9-11	More or Less? Which is Best?
MA 0.1.1.g			
		U7-8	Make It, Break It
MA 0.3.1.b			
			Shape Families
MA 0.3.1.d			
U4-6	Geometry - Sweet Shapes		
MA 0.3.2.a			
			Shape Simon Says

Newest Features

Power Path is the next generation of activities for Istation, bringing a more modern approach to the user experience. These activities contain a greater degree of adaptability, many more questions, and a greater sense of agency for the student.

MP 1, 2, 3, 4, 5, 6, 7, 8			
Code	Digital Student Experience	Code	Teacher Resources
MA 1.1.1.a MA 1.1.1.b MA 1.1.1.c			
		U16-17	One Hundred Twenty is Plenty
MA 1.1.1.d			
		U12-13	Two-Digit Memory
$\begin{aligned} & \hline \text { MA 1.1.1.f } \\ & \text { MA 1.1.1.j } \end{aligned}$			
U14-16	Number Sense - Comparison Cards: Comparing TwoDigit Numbers	U14-16	Dare to Compare Two-Digit Numbers
MA 1.3.1.a			
U20-23	Geometry - Sweet Shapes		
$\begin{aligned} & \hline \text { MA 2.1.1.c } \\ & \text { MA 2.1.1.d } \end{aligned}$			
		U30-31	Make It, Break It, Toss It
MA 2.1.1.a			
		U24-30	Skip Counting with Patterns
MA 2.1.1.			

Newest Features

Power Path is the next generation of activities for Istation, bringing a more modern approach to the user experience. These activities contain a greater degree of adaptability, many more questions, and a greater sense of agency for the student.

Code	Digital Student Experience	Code	Teacher Resources
U33-35	Number Sense - Comparison Cards: Comparing ThreeDigit Numbers	U33-35	Dare to Compare Three-Digit Numbers
MA 3.1.1.c			
U37-39	Number Sense - Pyramid Pinball: Rounding to the Nearest 10 or 100	U37-39	Round and Round We Go (Whole Numbers)
MA 3.3.1.a			
			Quads Quads Quads
MA 4.1.1.a			
U41-43	Number Sense - Comparison Cards: Comparing MultiDigit Numbers	U41-43	Dare to Compare Multi-Digit Numbers
MA 4.1.1.g			
U42-44	Number Sense - Pyramid Pinball: Rounding to Any Place	U42-44	Round and Round We Go (Multi-Digit) Numbers
$\begin{aligned} & \text { MA 5.1.1.a } \\ & \text { MA 5.1.1.b } \end{aligned}$			
U47-49	Number Sense - Comparison Cards: Comparing Decimal Numbers	U47-49	Dare to Compare Decimal Numbers
MA 5.1.1.c			
U48-50	Number Sense - Pyramid Pinball: Rounding Decimals	U48-50	Round and Round We Go (Decimal) Numbers

Power Path Featured Content (Spanish)

Newest Features			
Power Path is the next generation of activities for Istation, bringing a more modern approach to the user experience. These activities contain a greater degree of adaptability, many more questions, and a greater sense of agency for the student.			
MP 1, 2, 3, 4, 5, 6, 7, 8			
Code	Digital Student Experience	Code	Teacher Resources
MA 0.1.1.h			
U9-11	Tarjetas de comparación - Comparando grupos o números	U9-11	¿Más o menos? ¿Cuál es mejor?
MA 0.1.1.j			
		U9-11	¿Más o menos? ¿Cuál es mejor?
MA 1.1.1.f MA 1.1.1.j			
U14-16	Tarjetas de comparación - Comparando números de dos dígitos	U14-16	Atrévete a comparar (Números de dos dígitos)
MA 2.1.1.a			
U33-35	Tarjetas de comparación - Comparando números de tres dígitos	U33-35	Atrévete a comparar (Números de tres dígitos)
MA 3.1.1.c			
		U37-39	Dando y dando la vuelta (Números Enteros)
MA 4.1.1.a			
U41-43	Tarjetas de comparación - Comparando números de múltiples dígitos	U42-44	Atrévete a comparar (Numéros de dígitos múltiples)

Newest Features

Power Path is the next generation of activities for Istation, bringing a more modern approach to the user experience. These activities contain a greater degree of adaptability, many more questions, and a greater sense of agency for the student.

MP 1, 2, 3, 4, 5, 6, 7, 8	Code	Teacher Resources	
Code	Digital Student Experience	U42-44	Dando y dando la vuelta (Números de dígitos multiples)
MA 4.1.1.g		U47-49	Atrévete a comparar (Decimales)
MA 5.1.1.a			
MA 5.1.1.b	Tarjetas de comparación - Comparando números decimales		
U47-49	U48-50	Dando y dando la vuelta (Decimales)	
MA 5.1.1.c			

Kindergarten

NUMBER: Students will communicate number sense concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines.

Numeric Relationships: students will demonstrate, represent, and show relationships among whole numbers within the base-ten number system.

MA 0.1.1.a			
Perform the counting sequence by counting forward from any given number to 100 , by ones. Count by tens to 100 starting at any decade number.			
MP 1, 2, 3, 4, 5, 6, 7, 8	Code		
Code	Digital Student Experience		Teacher Resources
U14	Number Sense - "EZ with a Rock and Roll Beat" (1-100)	U14	One Hundred Is a Lot
U14	Number Sense - Identifying Numbers (1-100)	U14	Roll-Count-Cover - Skip Counting by Tens
U14	Number Sense - Identify Missing Numbers (1-100)	U21	The Arrow Says (1-100)
U14	Number Sense - Number Sequence (1-100)	U23	Decade Numbers
U14	Number Sense - "Hens by Tens" (1-100)		
U14	Number Sense - Count the Hen Amount (1-100)		
U14	Number Sense - Count to the Target Amount (1-100)		
U14	Number Sense - Choose the Correct Amount (1-100)		

MA 0.1.1.b

Demonstrate cardinality (i.e. the last number name said indicates the number of objects counted), regardless of the arrangement or order in which the objects were counted.

MP 1, 2, 3, 4, 5, 6, 7, 8		Digital Student Experience	Code
Code	Teacher Resources		
U6	Number Sense - "Counting Cattle" (1-10)	U6	Count with Me (1-20)
U6	Number Sense - Counting in a Line (1-10)	U8	Counting Sticks (1-20)
U6	Number Sense - Counting a Static Scattered Group $(1-10)$	U8	Counting Objects (1-20)
U6	Number Sense - Remember the Counted Amount (1-10)	U14	One Hundred Is a Lot
U7	Number Sense - "Counting Cattle" (1-10)	U14	Roll-Count-Cover - Skip Counting by Tens
U7	Number Sense - Counting Fingers (1-10)	U18	Counting Memory
U7	Number Sense - Choose the Correct Amount (1-10)	U21	The Arrow Says (1-100)
U7	Number Sense - Counting a Static Scattered Group $(1-10)$	U23	Decade Numbers
U8	Number Sense - "Counting Cattle" (1-20)	ISIP	Set Stories
U8	Number Sense - Counting in a Line (1-20)	ISIP	Ten Frame Puzzles (1-20)
U8	Number Sense - Counting in an Array (1-20)	ISIP	Total Amount in a Scattered Group
U8	Number Sense - Counting a Scattered Static Group $(1-20)$	ISIP	Understanding Ordinal Numbers
U10	Number Sense - "Counting Cattle" (1-20)		
U10	Number Sense - Choose the Correct Amount (1-20)		

MA 0.1.1.b

Demonstrate cardinality (i.e. the last number name said indicates the number of objects counted), regardless of the arrangement or order in which the objects were counted.

MP 1, 2, 3, 4, 5, 6, 7, 8			
Code	Digital Student Experience	Code	Teacher Resources
U10	Number Sense - Remember the Counted Amount (1-20)		
U10	Number Sense - Counting an Array (1-20)		
U10	Number Sense - Counting a Scattered Static Group $(1-20)$		

MA 0.1.1.c

Use one-to-one correspondence (pairing each object with one and only one spoken number name, and each spoken number name with one and only one object) when counting objects to show the relationship between number and quantities of 0 to 20.

MP 1, 2, 3, 4, 5, 6, 7, 8	Teacher Resources		
Code	Digital Student Experience	Code	U6
U6	Number Sense - "Counting Cattle" (1-10)	Count with Me (1-20)	
U6	Number Sense - Counting in a Line (1-10)	Counting Sticks (1-20)	
U6	Number Sense - Counting a Static Scattered Group $(1-10)$	U8	Counting Objects (1-20)
U6	Number Sense - Remember the Counted Amount (1-10)	ISIP	Set Stories
U7	Number Sense - "Counting Cattle" (1-10)	ISIP	Ten Frame Puzzles (1-20)
U7	Number Sense - Counting Fingers (1-10)	ISIP	Total Amount in a Scattered Group

MA 0.1.1.c

Use one-to-one correspondence (pairing each object with one and only one spoken number name, and each spoken number name with one and only one object) when counting objects to show the relationship between number and quantities of 0 to 20.

MP 1, 2, 3, 4, 5, 6, 7, 8	Code	Teacher Resources	
Code	Digit Student Experience	ISIP	Understanding Ordinal Numbers
U7	Number Sense - Choose the Correct Amount (1-10)		
U7	Number Sense - Counting a Static Scattered Group $(1-10)$		
U8	Number Sense - "Counting Cattle" (1-20)		
U8	Number Sense - Counting in a Line (1-20)		
U8	Number Sense - Counting in an Array (1-20)		
U8	Number Sense - Counting a Scattered Static Group $(1-20)$		
U10	Number Sense - "Counting Cattle" (1-20)		
U10	Number Sense - Choose the Correct Amount (1-20)		
U10	Number Sense - Remember the Counted Amount (1-20)		
U10	Number Sense - Counting an Array (1-20)		
U10	Number Sense - Counting a Scattered Static Group $(1-20)$		

MA 0.1.1.d

Demonstrate the relationship between whole numbers, knowing each sequential number name refers to a quantity that is one larger.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U6	Number Sense - "Counting Cattle" (1-10)	U6	Count with Me (1-20)
U6	Number Sense - Counting in a Line (1-10)	U8	Counting Sticks (1-20)
U6	Number Sense - Counting a Static Scattered Group $(1-10)$	U8	Counting Objects (1-20)
U6	Number Sense - Remember the Counted Amount (1-10)	ISIP	Set Stories
U7	Number Sense - "Counting Cattle" (1-10)	ISIP	Ten Frame Puzzles (1-20)
U7	Number Sense - Counting Fingers (1-10)	ISIP	Total Amount in a Scattered Group
U7	Number Sense - Choose the Correct Amount (1-10)	ISIP	Understanding Ordinal Numbers
U7	Number Sense - Counting a Static Scattered Group (1-10)		
U8	Number Sense - "Counting Cattle" (1-20)		
U8	Number Sense - Counting in a Line (1-20)		
U8	Number Sense - Counting in an Array (1-20)		
U8	Number Sense - Counting a Scattered Static Group (1-20)		
U10	Number Sense - "Counting Cattle" (1-20)		
U10	Number Sense - Choose the Correct Amount (1-20)		

MA 0.1.1.d

Demonstrate the relationship between whole numbers, knowing each sequential number name refers to a quantity that is one larger.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U10	Number Sense - Remember the Counted Amount (1-20)		
U10	Number Sense - Counting an Array (1-20)		
U10	Number Sense - Counting a Scattered Static Group $(1-20)$		

MA 0.1.1.e

Count to answer "how many?" questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1-20, count out that many objects.

MP 1, 2, 3, 4, 5, 6, 7, 8	Code	Teacher Resources	
Code	Digital Student Experience	U6	Domino Dot Memory (1-10)
U6	Number Sense - "Counting Cattle" (1-10)	U7	Counting a Scattered Static Group (1-10)
U6	Number Sense - Counting in a Line (1-10)	U8	Counting Sticks (1-20)
U6	Number Sense - Counting a Static Scattered Group $(1-10)$	U8	Counting Objects (1-20)
U6	Number Sense - Remember the Counted Amount (1-10)	U18	Counting Memory
U7	Number Sense - "Counting Cattle" (1-10)	ISIP	Set Stories
U7	Number Sense - Counting Fingers (1-10)	ISIP	Total Amount in a Scattered Group
U7	Number Sense - Choose the Correct Amount (1-10)		

MA 0.1.1.e

Count to answer "how many?" questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1-20, count out that many objects.

MP 1, 2, 3, 4, 5, 6, 7, 8	Digital Student Experience	Code	Teacher Resources
Code	Number Sense - Counting a Static Scattered Group $(1-10)$	ISIP	Ten Frame Puzzles (1-20)
U7	ISIP	Multiple Representations of Numbers (1-10)	
U8	Number Sense - "Counting Cattle" (1-20)	ISIP	Subitizing to Problem Solve
U8	Number Sense - Counting in a Line (1-20)		
U8	Number Sense - Counting in an Array (1-20)		
U8	Number Sense - Counting a Scattered Static Group $(1-20)$		
U10	Number Sense - "Counting Cattle" (1-20)		
U10	Number Sense - Choose the Correct Amount (1-20)		
U10	Number Sense - Remember the Counted Amount (1-20)		

MA 0.1.1.f

Write numbers 0 to 20 and represent a number of objects with a written numeral 0 to 20 .
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U11	Number Sense - "Writing Our Numbers"	U6	Domino Dot Memory (1-10)
U11	Number Sense - Writing Numbers Everywhere (1-10)	U7	Counting a Scattered Static Group (1-10)

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

MA 0.1.1.f

Write numbers 0 to 20 and represent a number of objects with a written numeral 0 to 20 .
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U15	Number Sense - "Pattern of the Count" (1-50)	U7	Calendar Counting (1-30)
U15	Number Sense - Place Value Rows (1-50)	U8	Counting Sticks (1-20)
U15	Number Sense - Number Puzzle (1-50)	U8	Counting Objects (1-20)
U18	Number Sense - Write to Represent Numbers (0-20)	U10	Park the Car and Write (1-20)
U19	Number Sense - "Pattern of the Count" (1-20)	U11	Writing Numbers Everywhere (5-10)
U19	Number Sense - Place Value Columns (by ones and tens to 50)	U11	Writing Numbers (10-20)
U19	Number Sense - Number Puzzle (by ones and tens to 50)	U18	Counting Memory
		ISIP	Set Stories
		ISIP	Total Amount in a Scattered Group
		ISIP	Ten Frame Puzzles (1-20)
		ISIP	Multiple Representations of Numbers (1-10)

MA 0.1.1.h

Compare the number of objects in two groups by identifying the comparison as greater than, less than, or equal to by using strategies of matching and counting.

MP 1, 2, 3, 4, 5, 6, 7, 8			
Code	Digital Student Experience	Code	Teacher Resources
		U6	Less/More/Equal Sets of Concrete Objects
		ISIP	Finding One More or One Less (1-20)
		ISIP	Comparing Groups of Objects (1-20)
		ISIP	Multiple Representations of Numbers (1-10)

MA 0.1.1.j			
Compare the value of two written numerals between 1 and 10.			
MP 1, 2, 3, 4, 5, 6, 7, 8	Code	Teacher Resources	
Code	Digital Student Experience	U6	Less/More/Equal Sets of Concrete Objects
		ISIP	Finding One More or One Less (1-20)
		ISIP	Comparing Groups of Objects (1-20)
		ISIP	Multiple Representations of Numbers (1-10)

MA 0.1.1.g

Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations.

MP 1, 2, 3, 4, 5, 6, 7, 8	Digital Student Experience	Code	Teacher Resources
Code		U8	Parts and Wholes
U9	Computations and Algebraic Thinking - "Part Part Whole in New Orleans" (1-10)	U9	Roll to Find the Whole
U9	Computations and Algebraic Thinking - Part Part Whole Addition within 10	U10	Dogs and Cats on Mats (up to 10)
U10	Computations and Algebraic Thinking - "Part Part Whole in New Orleans" (1-10)	U12	Ten or Not Ten
U10	Computations and Algebraic Thinking - Part Part Whole Addition Stories	U13	Whole in the Hand
U12	Computations and Algebraic Thinking - "Part Part Whole in New Orleans" (1-10)	Decomposing House with Pictures	
U12	Computations and Algebraic Thinking - Making Ten Using Tens Frames	U18	Decomposing House
U12	Computations and Algebraic Thinking - ldentifying Addends Using Tens Frames	U19	Relative Magnitude with Part Part Whole
U13	Computations and Algebraic Thinking - "Chicago Pizza Blues" (within 10)	U20	Start, Change, Result
U13	Computations and Algebraic Thinking - Subtraction within Ten	Udding with Addend Cards	
U14	Computations and Algebraic Thinking - "Chicago Pizza Blues" (within 10)		

MA 0.1.1.g

Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations.

MP 1, 2, 3, 4, 5, 6, 7, 8	Code	Teacher Resources	
Code	Digital Student Experience	U22	Beading the Difference
U14	Computations and Algebraic Thinking - Whole Part Part Subtraction Stories (within 10)	ISIP	Subtraction within Ten
U18	Number Sense - Decompose Numbers Less than or Equal to Ten	ISIP	Addition Stories
		ISIP	Subtraction Stories
		ISIP	Count Back to Subtract
		ISIP	Ten Frame Addition

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

ALGEBRA: Students will communicate algebraic concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines.

Algebraic Relationships: Students will demonstrate, represent, and show relationships with expressions and equations.

MA 0.2.1.a			
Decompose numbers less than or equal to 10 into pairs in more than one way, showing each decomposition with a model, drawing, or equation (e.g., $7=4+3$ and $7=1+6$ (
MP 1, 2, 3, 4, 5, 6, 7, 8	Code		
Code	Digital Student Experience	U8	Parts and Wholes
U9	Computations and Algebraic Thinking - "Part Part Whole in New Orleans" (1-10)	U9	Roll to Find the Whole
U9	Computations and Algebraic Thinking - Part Part Whole Addition within 10	U10	Dogs and Cats on Mats (up to 10)
U10	Computations and Algebraic Thinking - "Part Part Whole in New Orleans" (1-10)	U12	Ten or Not Ten
U10	Computations and Algebraic Thinking - Part Part Whole Addition Stories	U13	Whole in the Hand
U12	Computations and Algebraic Thinking - "Part Part Whole in New Orleans" (1-10)	Decomposing House with Pictures	
U12	Computations and Algebraic Thinking - Making Ten Using Tens Frames	U18	Decomposing House
U12	Computations and Algebraic Thinking - Identifying Addends Using Tens Frames	Relative Magnitude with Part Part Whole	
U13	Computations and Algebraic Thinking - "Chicago Pizza Blues" (within 10)		

MA 0.2.1.a

Decompose numbers less than or equal to 10 into pairs in more than one way, showing each decomposition with a model, drawing, or equation (e.g., $7=4+3$ and $7=1+6$ (

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U13	Computations and Algebraic Thinking - Subtraction within Ten	U20	Start, Change, Result
U14	Computations and Algebraic Thinking - "Chicago Pizza Blues" (within 10)	U20	Adding with Addend Cards
U14	Computations and Algebraic Thinking - Whole Part Part Subtraction Stories (within 10)	U22	Beading the Difference
U18	Number Sense - Decompose Numbers Less than or Equal to Ten	ISIP	Subtraction within Ten
		ISIP	Addition Stories
		ISIP	Subtraction Stories
	ISIP	Count Back to Subtract	

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

MA 0.2.1.b

For any number from 1 to 9 , find the number that makes 10 when added to the given number, e.g., by using objects or drawings, and record the answer with a drawing or equation.

MP 1, 2, 3, 4, 5, 6, 7, 8			
Code	Digital Student Experience	Code	Teacher Resources
U9	Computations and Algebraic Thinking - "Part Part Whole in New Orleans" (1-10)	U9	Roll to Find the Whole
U9	Computations and Algebraic Thinking - Part Part Whole Addition Stories	U 10	Dogs and Cats on Mats (up to 10)
U10	Computations and Algebraic Thinking - "Part Part Whole in New Orleans" (1-10)	U 12	Ten or Not Ten
U10	Computations and Algebraic Thinking - Part Part Whole Addition Stories	U 13	Whole in the Hand
U12	Computations and Algebraic Thinking - "Part Part Whole in New Orleans" (1-10)	U 18	Decomposing House with Pictures
U12	Computations and Algebraic Thinking - Making Ten Using Tens Frames	Decomposing House	
U12	Computations and Algebraic Thinking - Identifying Addends Using Tens Frames	U19	Relative Magnitude with Part Part Whole
U13	Computations and Algebraic Thinking - "Chicago Pizza Blues" (within 10)	U20	Start, Change, Result
U13	Computations and Algebraic Thinking - Subtraction within Ten	U20	Adding with Addend Cards
U14	Computations and Algebraic Thinking - "Chicago Pizza Blues" (within 10)	Beading the Difference	

MA 0.2.1.b

For any number from 1 to 9 , find the number that makes 10 when added to the given number, e.g., by using objects or drawings, and record the answer with a drawing or equation.

MP 1, 2, 3, 4, 5, 6, 7, 8	Code	Teacher Resources	
Code	Digital Student Experience		
U14	Computations and Algebraic Thinking - Whole Part Part Subtraction Stories (within 10)		
U18	Number Sense - Decompose Numbers Less than or Equal to Ten		

Applications: Students will solve real-world problems involving addition and subtraction.

MA 0.2.3.a

Solve real-world problems that involve addition and subtraction within 10 , (e.g., by using objects, drawings, or equations to represent the problem).

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U9	Computations and Algebraic Thinking - "Part Part Whole in New Orleans" (1-10)	U8	Parts and Wholes
U9	Computations and Algebraic Thinking - Part Part Whole Addition within 10	U10	Dogs and Cats on Mats (up to 10)
U10	Computations and Algebraic Thinking - "Part Part Whole in New Orleans" (1-10)	U12	Ten or Not Ten
U10	Computations and Algebraic Thinking - Part Part Whole Addition Stories	U18	Decomposing House with Pictures

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

MA 0.2.3.a
Solve real-world problems that involve addition and subtraction within 10 , (e.g., by using objects, drawings, or equations to represent the problem).

MP 1, 2, 3, 4, 5, 6, 7, 8	Code	Teacher Resources	
Code	Digital Student Experience	U18	Decomposing House
U12	Computations and Algebraic Thinking - "Part Part Whole in New Orleans" (1-10)	U19	Relative Magnitude with Part Part Whole
U12	Computations and Algebraic Thinking - Making Ten Using Tens Frames	U20	Start, Change, Result
U12	Computations and Algebraic Thinking - Identifying Addends Using Tens Frames	U20	Adding with Addend Cards
U13	Computations and Algebraic Thinking - "Chicago Pizza Blues" (within 10)	ISIP	Subtraction within Ten
U13	Computations and Algebraic Thinking - Subtraction within Ten	ISIP	Addition Stories
U14	Computations and Algebraic Thinking - "Chicago Pizza Blues" (within 10)	ISIP	Subtraction Stories
U14	Computations and Algebraic Thinking - Whole Part Part Subtraction Stories (within 10)	ISIP	Count Back to Subtract
U18	Number Sense - Decompose Numbers Less than or Equal to Ten	ISIP	Ten Frame Addition

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

GEOMETRY: Students will communicate geometric concepts and measurement concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines.

Characteristics: Students will identify and describe geometric characteristics and create two- and threedimensional shapes.

MA 0.3.1.a			
Describe real-world objects using names of shapes, regardless of their hexagons, cubes, cones, spheres, and cylinders).			
MP 1, 2, 3, 4, 5, 6, 7, 8	Code		
Code	Digital Student Experience	Teacher Resources	
U1	Geometry - Identify Circles	U1	Identifying Two-Dimensional Shapes
U1	Geometry - Identify Squares	U3	We're Going on a Shape Hunt
U3	Geometry - Identify Triangles	U9	Considering Sizes of Shapes
U9	Geometry - Identifying Shapes Regardless of Orientation	U14	Mighty Shape Match
		U14	Shape Four-in-a-Row

MA 0.3.1.b

Identify shapes as two-dimensional (lying in a plane, "flat") or three-dimensional ("solid").
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U14	Geometry - Identify Three-Dimensional Shapes	U14	Shape Four-in-a-Row

MA 0.3.1.c

Compare and analyze two- and three-dimensional shapes, with different sizes and orientations, to describe their similarities, differences, parts (e.g., number of sides and vertices/"corners"), and other attributes (e.g., having sides of equal length).

MP 1, 2, 3, 4, 5, 6, 7, 8			
Code	Digital Student Experience	Code	Teacher Resources
U1	Geometry - Identify Circles	U1	Identifying Two-Dimensional Shapes
U1	Geometry - Identify Squares	U3	We're Going on a Shape Hunt
U3	Geometry - Identify Triangles	U9	Considering Sizes of Shapes
U9	Geometry - Identify Shapes Regardless of Orientation	U9	Mighty Shape Match
U9	Geometry - Classify and Count by Attribute	U14	Shape Four-in-a-Row
U14	Geometry - Identify Three-Dimensional Shapes		

Measurement: Students will perform and compare measurements and apply formulas.

MA 0.3.3.a

Describe measurable attributes of real-world objects, (e.g., lengths or weight).

MP 1, 2, 3, 4, 5, 6, 7, 8			
Code	Digital Student Experience	Code	Teacher Resources
U10	Measurement and Data Analysis - Directly Comparing Length	U10	Directly Comparing Length
U10	Measurement and Data Analysis - Directly Comparing Weight	U10	Directly Comparing Weight

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

MA 0.3.3.a

Describe measurable attributes of real-world objects, (e.g., lengths or weight).
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U15	Measurement and Data Analysis - Directly Comparing Height	U15	Directly Comparing Height
U15	Measurement and Data Analysis - Directly Compare Capacity of Two Containers	U15	Which Holds More? Which Holds Less?

MA 0.3.3.b

Compare length and weight of two objects (e.g., longer/shorter, heaver/lighter).
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U10	Measurement and Data Analysis - Comparing Objects by Length	U10	Directly Comparing Length
U10	Measurement and Data Analysis - Comparing Objects by Weight	U10	Directly Comparing Weight
U15	Measurement and Data Analysis - Comparing Objects by Height	U15	Directly Comparing Height
U15	Measurement and Data Analysis - Comparing Objects by Capacity	U15	Which Holds More? Which Holds Less?

DATA: Students will communicate data analysis/probability concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines.

Analysis \& Applications: Students will analyze data to address the situation.

MA 0.4.2.a

Identify, sort, and classify objects by size, shape, color, and other attributes. Identify objects that do not belong to a particular group and explain the reasoning used.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		U 12	Classify and Compare
		U 19	Graphing Tic-Tac-Toe

Grade 1

NUMBER: Students will communicate number sense concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines.

Numeric Relationships: Students will demonstrate, represent, and show relationships among whole numbers within the base-ten number system.

MA 1.1.1.a			
Count to 120 by ones and tens, starting at any given number.			
MP 1, 2, 3, 4, 5, 6, 7, 8			
Code	Digital Student Experience	Code	
U17	Number Sense - "Pattern of the Count" Count by Ones to 100	U 14	One Hundred Is a Lot
U17	Number Sense - Place Value Rows (1-100)	U 17	Digit Deal (1-100)
U17	Number Sense - Number Puzzle (1-100)	U 18	Mixed-Up, Fixed-Up
U21	Number Sense - "Pattern of the Count" Count by Ones and Tens to 100	U 21	The Arrow Says (1-100)
U21	Number Sense - Place Value Columns (1-100)	U 23	Decade Numbers
U21	Number Sense - Number Puzzle (1-100)		

MA 1.1.1.b

Read and write numerals within the range of $0-120$.

MP 1, 2, 3, 4, 5, 6, 7, 8			
Code	Digital Student Experience	Code	
U17	Number Sense - "Pattern of the Count" Count by Ones to 100	U 14	One Hundred Is a Lot
U17	Number Sense - Place Value Rows (1-100)	U 17	Digit Deal (1-100)
U17	Number Sense - Number Puzzle (1-100)	U 18	Mixed-Up, Fixed-Up
U21	Number Sense - "Pattern of the Count" Count by Ones and Tens to 100	U 21	The Arrow Says (1-100)
U21	Number Sense - Place Value Columns (1-100)	U 23	Decade Numbers
U21	Number Sense - Number Puzzle (1-100)		

MA 1.1.1.c

Write numerals to match a representation of a given set of objects for numbers up to 120 .

MP 1, 2, 3, 4, 5, 6, 7, 8	Code	Teacher Resources	
Code	Digital Student Experience	U14	One Hundred Is a Lot
U17	Number Sense - "Pattern of the Count" Count by Ones to 100	U17	Digit Deal (1-100)
U17	Number Sense - Place Value Rows (1-100)	U18	Mixed-Up, Fixed-Up
U17	Number Sense - Number Puzzle (1-100)		

MA 1.1.1.c

Write numerals to match a representation of a given set of objects for numbers up to 120 .

MP 1, 2, 3, 4, 5, 6, 7, 8	Code	Teacher Resources	
Code	Digital Student Experience	U21	The Arrow Says (1-100)
U21	Number Sense - "Pattern of the Count" Count by Ones and Tens to 100	U23	Decade Numbers
U21	Number Sense - Place Value Columns (1-100)		
U21	Number Sense - Number Puzzle (1-100)		

MA 1.1.1.d

Demonstrate that each digit of a two-digit number represents amounts of tens and ones, knowing 10 can be considered as one unit made of ten ones which is called a "ten" and any two-digit number can be composed of some tens and some ones (e.g., 19 is one ten and nine ones, 83 is eight tens and three ones) and can be recorded as an equation (e.g., $19=10+9$).

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U23	Number Sense - Decade Numbers: Free Play Number Puzzle	U14	Roll-Count-Cover - Skip Counting by Tens
U23	Number Sense - Decade Numbers: Number Puzzle	U15	Digit Deal (1-50)
		U17	Digit Deal (1-100)
		U23	Decade Numbers
		ISIP	Base Ten Block Basics
		ISIP	Matching Numerals and Base Ten Blocks

MA 1.1.1.d

Demonstrate that each digit of a two-digit number represents amounts of tens and ones, knowing 10 can be considered as one unit made of ten ones which is called a "ten" and any two-digit number can be composed of some tens and some ones (e.g., 19 is one ten and nine ones, 83 is eight tens and three ones) and can be recorded as an equation (e.g., $19=10+9$).

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Base Ten Block Comparison Game

MA 1.1.1.e

Demonstrate that decade numbers represent a number of tens and 0 ones (e.g., $50=5$ tens and 0 ones).
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U23	Number Sense - Decade Numbers: Free Play Number Puzzle	U14	Roll-Count-Cover - Skip Counting by Tens
U23	Number Sense - Decade Numbers: Number Puzzle	U15	Digit Deal (1-50)
		U17	Digit Deal (1-100)
		U23	Decade Numbers
		ISIP	Base Ten Block Basics
		ISIP	Matching Numerals and Base Ten Blocks
		ISIP	Base Ten Block Comparison Game

MA 1.1.1.f

Compare two two-digit numbers by using symbols,$<=$, and $>$ and justify the comparison based on the number of tens and ones.

MP $1,2,3,4,5,6,7,8$			
Code	Digital Student Experience	Teacher Resources	
		ISIP	Base Ten Block Basics
		ISIP	Matching Numerals and Base Ten Blocks
		ISIP	Base Ten Block Comparison Game

Operations: Students will demonstrate the meaning of addition and subtraction with whole numbers and compute accurately.

MA 1.1.2.e

Add within 100, which may include adding a two-digit number and one-digit number, and adding a two-digit number and a multiple of ten using concrete models, drawings, and strategies which reflect understanding of place value.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U20	Computations and Algebraic Thinking - "The Math Whiz"	U20	Doubles Facts
U20	Computations and Algebraic Thinking - Fact Strategies	U20	Turn Around Addition
U20	Computations and Algebraic Thinking - Commutative Property	U20	Grouping Groceries
U20	Computations and Algebraic Thinking - Associative Property	U20	Identity Property Go Fish!

MA 1.1.2.e

Add within 100, which may include adding a two-digit number and one-digit number, and adding a two-digit number and a multiple of ten using concrete models, drawings, and strategies which reflect understanding of place value.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U20	Computations and Algebraic Thinking - Identity Property	U24	Start, Change, Result! (within 20)
		ISIP	Fact Family Dominoes
		FP	Building Sums to Ten
		FP	Addition Fast Track
		FP	Subtraction Fast Track
		FP	Sticky Sums
		Frite, Tally, Draw	
		FP	Whake It, Make It, Solve It (Addition)

ALGEBRA: Students will communicate algebraic concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines.
Algebraic Relationships: Students will demonstrate, represent, and show relationships with expressions and equations.

MA 1.2.1.b			
Use the relationship of addition and subtraction to solve subtraction problems (e.g., find $12-9=\ldots$, using the addition fact $9+3=12$).			
MP 1, 2, 3, 4, 5, 6, 7, 8	Code	Teacher Resources	
Code	Uital Student Experience	U18	Decomposing House
U22	Computations and Algebraic Thinking - Whole Part Part "Chicago Pizza Blues" (within 20)	U19	Decomposing House with Pictures
U22	Computations and Algebraic Thinking - Whole Part Part (within 20)	U22	Beading the Difference
U24	Computations and Algebraic Thinking - Subtraction Stories (within 20)	U22	Mystery in the Middle
U24	Computations and Algebraic Thinking - Determine the Unknown Whole Numbers in Subtraction Sentences	U24	Start, Change, Result! (within 20)
		ISIP	Subtraction Stories
		ISIP	Fact Family Dominoes

MA 1.2.1.c

Determine the unknown whole number in an addition or subtraction equation (e.g. $7+?=13$).

MP $1,2,3,4,5,6,7,8$	Code	Teacher Resources	
Code	Digital Student Experience	U 22	Beading the Difference
		U 22	Mystery in the Middle
		U 24	Start, Change, Result! (within 20)

MA 1.2.1.d

Determine the unknown whole number in an addition or subtraction equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8+?=11 ; 5=--3 ; 6+6=\ldots$.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U16	Computations and Algebraic Thinking - Determine the Unknown Whole Number in Addition Sentences	U16	Beginning-Middle-End
		U24	Mystery in the Middle

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

Algebraic Processes: Students will apply the operational properties when adding and subtracting.

MA 1.2.2.a

Decompose numbers and use the commutative and associative properties of addition to develop addition and subtraction strategies including (making 10's and counting on from the larger number) to add and subtract basic facts within 20 (e.g., decomposing to make $10,7+5=7+3+$ $2=10+2=12$; using the commutative property to count on $2+6=6+2$; and using the associative property to make $10,5+3+7=5+(3+7)$ $=5+10$).
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U10	Computations and Algebraic Thinking - "Part Part Whole in New Orleans" (1-20)	U10	Dogs and Cats on Mats (up to Ten)
U10	Computations and Algebraic Thinking - Addition Stories	U12	Ten or Not Ten
U12	Computations and Algebraic Thinking - Identifying Addends Using Tens Frames	U13	Whole in the Hand
U20	Computations and Algebraic Thinking - "Part Part Whole in New Orleans" (1-20)	U20	Turn Around Addition
U20	Computations and Algebraic Thinking - Addition Stories (horizontal orientation)	U20	Grouping Groceries
U20	Computations and Algebraic Thinking - Addition Stories (vertical orientation)	U20	Identity Property Go Fish!
U20	Computations and Algebraic Thinking - "The Math Whiz"	U20	Doubles Facts
U20	Computations and Algebraic Thinking - Fact Strategies	ISIP	Building Sums to Ten
U20	Computations and Algebraic Thinking - Commutative Property	ISIP	Place Value of Tens and One
U20	Computations and Algebraic Thinking - Associative Property	ISIP	Fact Family Dominoes

MA 1.2.2.a

Decompose numbers and use the commutative and associative properties of addition to develop addition and subtraction strategies including (making 10's and counting on from the larger number) to add and subtract basic facts within 20 (e.g., decomposing to make 10, 7+5=7+3+ $2=10+2=12$; using the commutative property to count on $2+6=6+2$; and using the associative property to make $10,5+3+7=5+(3+7)$ $=5+10$).

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U20	Computations and Algebraic Thinking - Identity Property	FP	Addition Fast Track
U10	Computations and Algebraic Thinking - "Part Part Whole in New Orleans" (1-20)	FP	Sticky Sums
U10	Computations and Algebraic Thinking - Addition Stories	FP	Write, Tally, Draw
		FP	Shake It, Make It, Solve It (Addition)
		FP	Wipe Out

MA 1.2.3.a

Solve real-world problems involving addition and subtraction within 20 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem).

MP 1, 2, 3, 4, 5, 6, 7, 8			
Code	Digital Student Experience	Code	Teacher Resources
U16	Computations and Algebraic Thinking - Determine Missing Addend	U16	Beginning-Middle-End
U19	Computations and Algebraic Thinking - "Part Part Whole in New Orleans" (1-20)	U18	Decomposing House

MA 1.2.3.a

Solve real-world problems involving addition and subtraction within 20 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem).

MP 1, 2, 3, 4, 5, 6, 7, 8			
Code	Digital Student Experience	Code	Teacher Resources
U19	Computations and Algebraic Thinking - Part Part Whole Using Ovals	U19	Decomposing House with Pictures
U19	Computations and Algebraic Thinking - Part Part Whole Using Ten Frames	U22	Beading the Difference
U20	Computations and Algebraic Thinking - "Part Part Whole in New Orleans" (1-20)	U24	Mystery in the Middle
U20	Computations and Algebraic Thinking - Addition Stories (1-20) Horizontal Equations	U24	Start, Change, Result! (within 20)
U20	Computations and Algebraic Thinking - Addition Stories (1-20) Vertical Equations		
U22	Computations and Algebraic Thinking - Whole Part Part "Chicago Pizza Blues" (within 20)		
U22	Computations and Algebraic Thinking - Whole Part Part (within 20)		
U24	Computations and Algebraic Thinking - Subtraction Stories (within 20)		
U24	Computations and Algebraic Thinking - Determine the Unknown Whole Numbers in Subtraction Sentences		

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

MA 1.2.3.b

Solve real-world problems that include addition of three whole numbers whose sum is less than or equal to 20 by using objects, drawings, and equations with a symbol to represent the unknown number in the problem.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U16	Computations and Algebraic Thinking - Determine the Unknown Whole Numbers in Addition Sentences	U16	Beginning-Middle-End
U20	Computations and Algebraic Thinking - Properties of Addition - Associative Property	U22	Beading the Difference
		U22	Mystery in the Middle
		ISIP	Associative Property of Addition
		Commutative Property of Addition	

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

GEOMETRY: Students will communicate geometric concepts and measurement concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines.

Characteristics: Students will identify and describe geometric characteristics and create two and threedimensional shapes.

MA 1.3.1.a

Distinguish between defining attributes (e.g., triangles are closed and three-sided) versus non-defining attributes (e.g., color, orientation, overall size); build and draw shapes to possess defining attributes.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		U14	Shape Four-in-a-Row

MA 1.3.1.b

Partition circles and rectangles into two and four equal shares, describe the shares using the words halves, fourths, and quarters, and use the phrases half of, fourth of, and quarter of. Describe the whole as two of, or four of the shares. Understand for these examples that partitioning into more equal shares creates smaller shares.

MP 1, 2, 3, 4, 5, 6, 7, 8			
Code	Digital Student Experience	Code	Teacher Resources
U18	Geometry - Identify Halves and Fourths	U18	Fraction Four-in-a-Row

MA 1.3.3.a

Identify, name, and understand the value of dimes and pennies (e.g., a dime is equal to ten pennies) relating to tens and ones, and solve realworld problems involving dimes and pennies, using $¢$ symbol appropriately (e.g., If you have four dimes and two pennies, how many cents do you have?).
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U16	Measurement and Data Analysis - Identify the Value of a Collection of Mixed Coins	U14	Coin Value Cover-Up
U16	Measurement and Data Analysis - Compare Amounts of Mixed Coins	U16	Money Match
U19	Measurement and Data Analysis - Compare Amounts of Mixed Coins with Given Amounts of Money		

MA 1.3.3.b

Tell and write time to the half hour and hour using analog and digital clocks.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U16	Measurement and Data Analysis - Tell Time to the Nearest Hour	U16	What Does the Clock Say?
U16	Measurement and Data Analysis - Tell and Write Time from Analog and Digital Clock to the Nearest Half Hour	U16	Roll the Clock
U19	Measurement and Data Analysis - Tell and Write Time from Analog/Digital Clocks to the Nearest Hour and Half Hour	U19	Set the Time and Go!

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

DATA: Students will communicate data analysis/probability concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines.

Representations: Students will create displays that represent data.

MA 1.4.1.a

Organize and represent a data set with up to three categories using a picture graph.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		U19	Graphing Tic-Tac-Toe
		ISIP	Picture Graphs to the Rescue!
		ISIP	Analyze and Add Using Picture Graphs
		ISIP	Graphing Three Ways
		ISIP	Determining Most and Least with Graphs
		ISIP	Read and Analyze Bar Graphs

Analysis \& Applications: Students will analyze data to address the situation.

MA 1.4.2.a

Ask and answer questions about the total number of data points, how many in each category, and compare categories by identifying how many more or less are in a particular category using a picture graph.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		U19	Graphing Tic-Tac-Toe

MA 1.4.2.a

Ask and answer questions about the total number of data points, how many in each category, and compare categories by identifying how many more or less are in a particular category using a picture graph.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Picture Graphs to the Rescue!
		ISIP	Analyze and Add Using Picture Graphs
		ISIP	Graphing Three Ways
		ISIP	Determining Most and Least with Graphs
		ISIP	Read and Analyze Bar Graphs

Grade 2

NUMBER: Students will communicate number sense concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines. Represent and solve problems involving addition and subtraction.

Numeric Relationships: Students will demonstrate, represent, and show relationships among whole numbers within the base-ten number system.

MA 2.1.1.b			
Read and write numbers within the range of $0-1,000$ using standard, word, and expanded forms.			
MP 1, 2, 3, 4, 5, 6, 7, 8	Code	Teacher Resources	
Code	Digital Student Experience	U30	Building Numbers Using Base Ten Blocks
U30	Number Sense - Writing Standard Form from Expanded Form	U30	Writing Expanded Form from Standard Form
U30	Number Sense - Writing Expanded Form from Standard Form	U30	Writing Word Form from Expanded and Standard Form
U30	Number Sense - Writing Word Form from Expanded and Standard Form	ISIP	Equivalent Representations
		ISIP	Build a Base Ten Cube
		ISIP	Creating Numbers with Base Ten Blocks
		ISIP	Expanded Form Place Value Cups
		Writing Standard Form from Expanded Form	

MA 2.1.1.c

Demonstrate that each digit of a three-digit number represents amounts of hundreds, tens and ones (e.g., 387 is 3 hundreds, 8 tens, 7 ones).
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U30	Number Sense - Writing Standard Form from Expanded Form	U30	Building Numbers Using Base Ten Blocks
U30	Number Sense - Writing Expanded Form from Standard Form	U30	Writing Expanded Form from Standard Form
U30	Number Sense - Writing Word Form from Expanded and Standard Form	U30	Writing Word Form from Expanded and Standard Form
		ISIP	Equivalent Representations
		ISIP	Build a Base Ten Cube
		ISIP	Creating Numbers with Base Ten Blocks
		ISIP	Expanded Form Place Value Cups
		Writing Standard Form from Expanded Form	

MA 2.1.1.d

Demonstrate that 100 represents a group of ten tens.

MP 1, 2, 3, 4, 5, 6, 7, 8	Code	Teacher Resources	
Code	Digital Student Experience	U30	Building Numbers Using Base Ten Blocks
U30	Number Sense - Writing Standard Form from Expanded Form	U30	Writing Expanded Form from Standard Form
U30	Number Sense - Writing Expanded Form from Standard Form	U30	Writing Word Form from Expanded and Standard Form
U30	Number Sense - Writing Word Form from Expanded and Standard Form	ISIP	Equivalent Representations
		ISIP	Build a Base Ten Cube
		ISIP	Creating Numbers with Base Ten Blocks
		ISIP	Expanded Form Place Value Cups
		ISIP	Writing Standard Form from Expanded Form

MA 2.1.1.e

Compare two three-digit numbers by using symbols and justify the comparison based on the meanings of the hundreds, tens, and ones.

MP 1, 2, 3, 4, 5, 6, 7, 8	Code	Tigital Student Experience	U30
Code	Comparison - Two-Digit Numbers: Language and Symbols		
U30	Number Sense - Comparing Two Two-Digit Whole Numbers	U30	Comparison - Three-Digit Numbers
U30	Number Sense - Comparing Two Three-Digit Numbers	ISIP	Steps for Comparing Three-Digit Numbers
U30	Number Sense - Comparing Two Three-Digit Whole Numbers with Zeroes	ISIP	Building and Comparing Three-Digit numbers

Operations: Students will demonstrate the meaning of addition and subtraction with whole numbers and compute accurately.

MA 2.1.2.a

Fluently (i.e. automatic recall based on understanding) add and subtract within 20.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		U31	Fact Families - Addition and Subtraction
		FP	Addition Fast Track
		FP	Subtraction Fast Track
		FP	Left-Hand, Right-Hand Grab Bag

MA 2.1.2.a

Fluently (i.e. automatic recall based on understanding) add and subtract within 20.

MP 1, 2, 3, 4, 5, 6, 7, 8	Code	Teacher Resources	
Code	Digital Student Experience	FP	Shake It! Make It! Solve It! Addition
		FP	Sticky Sums
		FP	Wipe Out
		FP	Write, Tally, Draw
		FP	Building Sums to Twenty
		U31	Fact Families - Addition and Subtraction
		ISIP	Addition and Subtraction Fact Families

MA 2.1.2.b

Add and subtract within 100 using strategies based on place value, including the standard algorithm, properties of operations, and/or the relationship between addition and subtraction.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U31	Computations and Algebraic Thinking - Adding with Regrouping Using Concrete Models	U31	Adding with Regrouping - Concrete
U31	Computations and Algebraic Thinking - Subtracting with Regrouping Using Concrete Models	U31	Addition Using Partitioning

MA 2.1.2.b

Add and subtract within 100 using strategies based on place value, including the standard algorithm, properties of operations, and/or the relationship between addition and subtraction.

MP 1, 2, 3, 4, 5, 6, 7, 8			
Code	Digital Student Experience	Code	Teacher Resources
U31	Computations and Algebraic Thinking - Adding with Regrouping - Partitioning	U31	Subtraction Using Partitioning
U31	Computations and Algebraic Thinking - Subtracting with Regrouping - Partitioning	U31	Adding on a Number Line
U31	Computations and Algebraic Thinking - Adding on a Number Line	U31	Subtracting on a Number Line
U31	Computations and Algebraic Thinking - Subtracting on a Number Line	U31	Fact Families - Addition and Subtraction
U31	Computations and Algebraic Thinking - Fact Families - Addition and Subtraction	ISIP	Partitioning for Addition
		ISIP	Using Arrow Paths to Add and Subtract
		FP	Fact Family Dominos (Addition/Subtraction)
	FP	Addition Fast Track	
		FP	Subtraction Fast Track
	FP	Left-Hand, Right-Hand Grab Bag	
		FP	Shake It! Make It! Solve It! Addition
	FP	Sticky Sums	
	Wipe Out		
		FP	

MA 2.1.2.b

Add and subtract within 100 using strategies based on place value, including the standard algorithm, properties of operations, and/or the relationship between addition and subtraction.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		FP	Write, Tally, Draw

MA 2.1.2.e

Add and subtract within 1000, using concrete models, drawings, and strategies, which reflect understanding of place value and properties of operations.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U32	Computations and Algebraic Thinking - Two-Step Word Problems with Unknowns at the End	U32	Build Multistep Equations
U32	Computations and Algebraic Thinking - Two-Step Word Problems with Unknowns in the Middle	U32	Build and Solve Two-Step Equations with Addition and Subtraction
		U32	Build Multistep Equations with Multiple Operations
		U32	Solve Multistep Equations
	ISIP	Choosing the Operation	

MA 2.1.2.f

Use addition to find the total number of objects arranged in an array no larger than five rows and five columns and write an equation to express the total (e.g., $3+3+3=9$).

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U32	Computations and Algebraic Thinking - Addition Arrays	U32	Addition Arrays

ALGEBRA: Students will communicate algebraic concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines.

Algebraic Relationships: Students will demonstrate, represent, and show relationships with expressions and equations.

MA 2.2.1.a				
Identify a group of objects from 0-20 as even or odd by counting by 2's or by showing even numbers as a sum of two equal parts.				
MP 1, 2, 3, 4, 5, 6, 7, 8				
Code	Digital Student Experience	Code		
U30	Computations and Algebraic Thinking - Even and Odd Pairing	U30	Determining Even and Odd by Pairing	Tesources
:---				

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

Applications: Students will solve real-world problems involving addition and subtraction

2.2.3.a

Solve real-world problems involving addition and subtraction within 100 in situations of addition and subtraction, including adding to, subtracting from, joining and separating, and comparing situations with unknowns in all positions using objects, models, drawings, verbal explanations, expressions and equations.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U32	Computations and Algebraic Thinking - Two-Step Word Problems with Unknowns at the End	U32	Build and Solve Two-Step Equations with Addition and Subtraction
U32	Computations and Algebraic Thinking - Two-Step Word Problems with Unknowns in the Middle	U32	Build Multistep Equations with Multiple Operations
		U32	Solve Multistep Equations with Multiple Operations

2.2.3.b

Create real-world problems to represent one- and two-step addition and subtraction within 100, with unknowns in all positions.

```
MP 1, 2, 3, 4, 5, 6, 7, }
```

Code	Digital Student Experience	Code	Teacher Resources
U32	Computations and Algebraic Thinking - Two-Step Word Problems with Unknowns at the End	U32	Build and Solve Two-Step Equations with Addition and Subtraction
U32	Computations and Algebraic Thinking - Two-Step Word Problems with Unknowns in the Middle	U32	Build Multistep Equations with Multiple Operations
		U32	Solve Multistep Equations with Multiple Operations

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

GEOMETRY: Students will communicate geometric concepts and measurement concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines.

Characteristics: Students will identify and describe geometric characteristics and create two and threedimensional shapes.

MA 2.3.1.b

Partition a rectangle into rows and columns of equal sized squares. Count to find the total.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U32	Geometry - Addition Arrays	U32	Addition Arrays

MA 2.3.1.c

Divide circles and rectangles into two, three, or four equal parts. Describe the parts using the language of halves, thirds, fourths, half of, a third of, a fourth of.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U32	Geometry - Partitioning to Identify Halves, Thirds, and Fourths	U32	Equal Shares of Identical Wholes
U32	Geometry - Equal Shares of Identical Wholes		

MA 2.3.1.d

Recognize that equal shares of identical wholes need not have the same shape.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U32	Geometry - Partitioning to Identify Halves, Thirds, and Fourths	U32	Equal Shares of Identical Wholes
U32	Geometry - Equal Shares of Identical Wholes		

Measurement: Students will perform and compare measurements and apply formulas.

MA 2.3.3.a

Solve real-world problems involving dollar bills, quarters, dimes, nickels, and pennies, using $\$$ and $\$$ symbols appropriately.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		U 32	Money Word Problems

MA 2.3.3.b

Identify and write time to five-minute intervals using analog and digital clocks and both a.m. and p.m.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U34	Measurement - Tell Time to the Nearest Five Minutes	U34	Time to the Nearest Five Minutes
		U34	Time - AM and PM

MA 2.3.3.b

Identify and write time to five-minute intervals using analog and digital clocks and both a.m. and p.m.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		U34	Time to the Quarter Hour

MA 2.3.3.c

Identify and use appropriate tools for measuring length (e.g., ruler, yardstick, meter stick, and measuring tape).
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U33	Measurement - Choose Units and Measure Lengths	U33	Choosing Units of Linear Measurement
U33	Measurement - Measure to the Nearest Centimeter	U33	Measure to the Nearest Inch
		U33	Measure to the Nearest Centimeter
		ISIP	Appropriate Tools for Linear Measurement
		ISIP	How to Use Linear Measurement Tools
		ISIP	Measuring Objects
		ISIP	Ruler Relay

MA 2.3.3.d

Measure the length of an object using two different length units and describe how the measurements relate to the size of the specific unit.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Unit Relationships

MA 2.3.3.f

Compare the difference in length of objects using inches and feet or centimeters and meters.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Ruler Relay

MA 2.3.3.g

Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers 0,1 , 2 , etc., and represent whole number sums and differences within 100 on a number line.

MP 1, 2, 3, 4, 5, 6, 7, 8	Code	Teacher Resources	
Code	Digital Student Experience	U31	Adding on a Number Line
U31	Computations and Algebraic Thinking - Adding on a Number Line	U31	Subtracting on a Number Line
U31	Computations and Algebraic Thinking - Subtracting on a Number Line		

DATA: Students will communicate data analysis/probability concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines.

Representations: Students will create displays that represent data.

MA 2.4.1.a			
Create and represent a data set using pictographs and bar graphs to represent a data set with up to four categories.			
MP 1, 2, 3, 4, 5, 6, 7, 8	Code	Teacher Resources	
Code	Digital Student Experience	U33	Creating Picture Graphs
U33	Data Analysis - Solving Problems Using Information Presented in Picture Graphs	U33	Interpreting Picture Graphs
U33	Data Analysis - Solving Problems Using Information Presented in Bar Graphs	U33	Analyzing Picture Graphs
		U33	Creating Bar Graphs
		U33	Interpreting Bar Graphs
		U33	Analyzing Bar Graphs

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

Analysis \& Applications: Students will analyze data to address the situation.

MA 2.4.1.b

Interpret data using bar graphs with up to four categories. Solve simple comparison problems using information from the graphs.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U33	Data Analysis - Solving Problems Using Information Presented in Picture Graphs	U33	Creating Picture Graphs
U33	Data Analysis - Solving Problems Using Information Presented in Bar Graphs	U33	Interpreting Picture Graphs
		U33	Analyzing Picture Graphs
		U33	Creating Bar Graphs
		U33	Interpreting Bar Graphs
		U33	Analyzing Bar Graphs

Grade 3

NUMBER: Students will communicate number sense concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines.

Numeric Relationships: Students will demonstrate, represent, and show relationships among whole numbers and simple fractions within the base-ten number system.

MA 3.1.1.C			
Round a whole number to the tens or hundreds place, using place value understanding or a visual representation.			
MP 1, 2, 3, 4, 5, 6, 7, 8			
Code	Digital Student Experience		Code
U35	Number Sense - Rounding to the Nearest Ten	U35	Rounding - Nearest Ten
U35	Number Sense - Rounding to the Nearest Hundred	U35	Rounding - Nearest Hundred
		U35	Rounding - Nearest Ten, Hundred, Thousand

MA 3.1.1.d

Represent and understand a fraction as a number on a number line.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U37	Number Sense - Equivalent Fractions	U37	Fractions Equivalent to One
U37	Number Sense - Fractions Equivalent to One	U37	Fractions Equivalent to Whole Numbers
U37	Number Sense - Many Equivalent Fractions	U37	Mixed Fractions on a Number Line
		U37	Many Equivalent Fractions

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

MA 3.1.1.d

Represent and understand a fraction as a number on a number line.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		U37	Identifying Equivalent Fractions

MA 3.1.1.e

Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U37	Number Sense - Fractions Equivalent to One	U37	Fractions Equivalent to One
U37	Number Sense - Fractions Equivalent to Whole Numbers	U37	Fractions Equivalent to Whole Numbers
		U37	Comparison - Fractions and Whole Numbers - Symbols

MA 3.1.1.f

Show and identify equivalent fractions using visual representations including pictures, manipulatives, and number lines.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U37	Number Sense - Equivalent Fractions	U37	Fractions Equivalent to One
U37	Number Sense - Fractions Equivalent to One	U37	Many Equivalent Fractions

MA 3.1.1.f

Show and identify equivalent fractions using visual representations including pictures, manipulatives, and number lines.

MP 1, 2, 3, 4, 5, 6, 7, 8			
Code	Digital Student Experience	Code	Teacher Resources
U37	Number Sense - Many Equivalent Fractions	U37	Fractions Equivalent to Whole Numbers
U37	Number Sense - Fractions Equivalent to Whole Numbers	U37	Identify Equivalent Fractions
U37	Number Sense - Mixed Numbers	ISIP	Identify Equivalent Fractions Using Area Models
U37	Number Sense - Comparing Fractions with the Same Denominator		
U37	Number Sense - Comparing Fractions with the Same Numerator		

MA 3.1.1.g

Find parts of a whole and parts of a set using visual representations.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U37	Number Sense - Equivalent Fractions	U37	Fractions Equivalent to One
U37	Number Sense - Fractions Equivalent to One	U37	Fractions Equivalent to Whole Numbers
U37	Number Sense - Many Equivalent Fractions	U37	Mixed Fractions on a Number Line
		U37	Many Equivalent Fractions
		U37	Identifying Equivalent Fractions

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

MA 3.1.1.

Compare and order fractions having the same numerators or denominators using visual representations, comparison symbols, and verbal reasoning.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U37	Number Sense - Equivalent Fractions	U37	Fractions Equivalent to One
U37	Number Sense - Fractions Equivalent to One	U37	Many Equivalent Fractions
U37	Number Sense - Many Equivalent Fractions	U37	Fractions Equivalent to Whole Numbers
U37	Number Sense - Fractions Equivalent to Whole Numbers	U37	Comparison - Fractions and Whole Numbers - Symbols
U37	Number Sense - Mixed Numbers	U37	Comparing Fractions with Like Numerators
U37	Number Sense - Comparing Fractions with the Same Denominator	U37	Identify Equivalent Fractions
U37	Number Sense - Comparing Fractions with the Same Numerator	ISIP	Comparing Fractions Using Models
		ISIP	Comparing Fractions
		ISIP	Identify Equivalent Fractions Using Area Models
		ISIP	Recognizing Fractions in Different Forms

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

Operations: Students will demonstrate the meaning of multiplication and division with whole numbers and compute accurately.

MA 3.1.2.a

Fluently add and subtract within 1,000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U36	Computations and Algebraic Thinking - Two-Step Word Problems - All Operations	U36	Build and Solve Two-Step Equations with All Operations

MA 3.1.2.c

Use drawings, words, arrays, symbols, repeated addition, equal groups, and number lines to explain the meaning of multiplication.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U35	Computations and Algebraic Thinking - Arithmetic Patterns in Multiplication	U35	Arithmetic Patterns in Multiplication
U36	Computations and Algebraic Thinking - Multiply One-Digit Numbers Using Concrete Models	U36	One-Digit by One-Digit Multiplication
U36	Computations and Algebraic Thinking - Multiply One-Digit Numbers Using 1 $\times 1$ Arrays	U36	Multiplying Two One-Digit Numbers with Arrays
		ISIP	Practicing Fact Families
		ISIP	Using Strip Diagrams to Solve Compare Problems

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

MA 3.1.2.f

Use objects, drawings, arrays, words and symbols to explain the relationship between multiplication and division (e.g., if $3 \times 4=12$ then $12 \div 3=$ 4).

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U36	Computations and Algebraic Thinking - Fact Families - Multiplication and Division	U36	Fact Families: Multiplication and Division
		ISIP	Doubling and Halving
		ISIP	Relating Multiplication and Division
		ISIP	Practicing Fact Families
		ISIP	Using Strip Diagrams to Solve Compare Problems

MA 3.1.2.g

Fluently (i.e. automatic recall based on understanding) multiply and divide within 100.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U35	Computations and Algebraic Thinking - Arithmetic Patterns in Multiplication	U35	Arithmetic Patterns in Multiplication
U36	Computations and Algebraic Thinking - Multiply One-Digit Numbers Using Concrete Models	U36	One-Digit by One-Digit Multiplication
U36	Computations and Algebraic Thinking - Fact Families - Multiplication and Division	U36	Multiplying Two One-Digit Numbers with Arrays

MA 3.1.2.g
Fluently (i.e. automatic recall based on understanding) multiply and divide within 100.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U36	Computations and Algebraic Thinking - Two-Step Word Problems - All Operations	U36	Build and Solve Two-Step Equations with All Operations
U36	Computations and Algebraic Thinking - Properties of Multiplication	U36	Fact Families: Multiplication and Division
		ISIP	Doubling and Halving
		ISIP	Relating Multiplication and Division
		ISIP	Practicing Fact Families
		ISIP	Using Strip Diagrams to Solve Compare Problems
		ISIP	Commutative Property of Multiplication
		FP	Wipe Oubling and Halving
		FP	Multominoes
		FP	Dice Blocks Towers
		FP	Sticky Products
		FP	Multiplication Fast Track
		FP	Division Fast Track

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

MA 3.1.2.g

Fluently (i.e. automatic recall based on understanding) multiply and divide within 100.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		FP	Shake It! Make It! Solve It! (Multiplication)

MA 3.1.2.h

Determine the reasonableness of whole number sums and differences in real-world problems using estimation, compatible numbers, mental computations, or other strategies.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U36	Computations and Algebraic Thinking - Two-Step Word Problems - All Operations	U35	Addition Problem-Solving Strategies
		U35	Subtraction Problem-Solving Strategies
		U35	Problem Solving without Numbers: Addition and Subtraction
		U36	Build and Solve Two-Step Equations with All Operations
	U36	Problem Solving without Numbers: Multiplication and Division	

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

ALGEBRA: Students will communicate algebraic concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines.

Algebraic Relationships: Students will demonstrate, represent, and show relationships with expressions and equations.

MA 3.2.1.a			
Identify arithmetic patterns (including patterns in the addition or multiplication tables) using properties of operations.			
MP 1, 2, 3, 4, 5, 6, 7, 8			
Code	Digital Student Experience		Code
U35	Computations and Algebraic Thinking - Arithmetic Patterns in Multiplication	U35	Arithmetic Patterns in Multiplication

Algebraic Processes: Student will apply the operational properties when multiplying and dividing.

MA 3.2.2.a			
Apply the commutative, associative, and distributive properties as strategies to multiply and divide.			
MP 1, 2, 3, 4, 5, 6, 7, 8			
Code	Digital Student Experience	Code	
U36	Computations and Algebraic Thinking - Properties of Multiplication	ISIP	Commutative Property of Multiplication
		ISIP	Associative Property of Multiplication

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

MA 3.2.2.b

Solve one-step whole number equations involving addition, subtraction, multiplication, or division, including the use of a letter to represent the unknown quantity.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U36	Computations and Algebraic Thinking - Two-Step Word Problems - All Operations	U 35	Addition Problem-Solving Strategies
		U 35	Subtraction Problem-Solving Strategies
		U 35	Problem Solving without Numbers: Addition and Subtraction
		U 36	Build and Solve Two-Step Equations with All Operations Problem Solving without Numbers: Multiplication and Division

Applications: Students will solve real-world problems involving equations with whole numbers.

MA 3.2.3.a

Solve real-world problems involving two-step equations (involving two operations) involving whole numbers using addition and subtraction.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U36	Computations and Algebraic Thinking - Two-Step Word Problems - All Operations	U35	Addition Problem-Solving Strategies
		U35	Subtraction Problem-Solving Strategies

MA 3.2.3.a

Solve real-world problems involving two-step equations (involving two operations) involving whole numbers using addition and subtraction.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		U35	Problem Solving without Numbers: Addition and Subtraction
		U36	Build and Solve Two-Step Equations with All Operations
		U36	Problem Solving without Numbers: Multiplication and Division

MA 3.2.3.b

Write an equation (e.g., one operation, one variable) to represent real-world problems involving whole numbers.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U36	Computations and Algebraic Thinking - Two-Step Word Problems - All Operations	U35	Addition Problem-Solving Strategies
		U35	Subtraction Problem-Solving Strategies
		U35	Problem Solving without Numbers: Addition and Subtraction
		U36	Build and Solve Two-Step Equations with All Operations
	U36	Problem Solving without Numbers: Multiplication and Division	

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

GEOMETRY: Students will communicate geometric concepts and measurement concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines.

Characteristics: Students will identify and describe geometric characteristics and create two and threedimensional shapes.

MA 3.3.1.a

Identify the number of sides, angles, and vertices of two-dimensional shapes.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U38	Geometry - Attributes of Quadrilaterals	U38	Understanding Quadrilaterals
		ISIP	Defining Quadrilaterals by Attributes

MA 3.3.1.b

Sort quadrilaterals into categories (e.g., rhombuses, squares, and rectangles).
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U38	Geometry - Attributes of Quadrilaterals	U38	Understanding Quadrilaterals
		ISIP	Defining Quadrilaterals by Attributes

MA 3.3.1.c

Draw lines to separate two-dimensional figures into equal areas, and express the area of each part as a unit fraction of the whole.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Recognizing Fractions in Different Forms
		ISIP	Finding the Area of Rectangles

Measurement: Students will perform and compare measurements and apply formulas.

MA 3.3.3.a

Find the perimeter of polygons given the side lengths, and find an unknown side length.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U38	Measurement - Perimeter Word Problems	U38	Finding Perimeter
		U38	Finding Missing Side Lengths in Word Problems
		ISIP	Measuring Perimeter of Polygons

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

MA 3.3.3.b

Tell and write time to the minute using both analog and digital clocks.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U39	Measurement and Data Analysis - Elapsed Time on a Number Line	U39	Elapsed Time within One-Hour
		U39	Elapsed Time Across Hours

MA 3.3.3.c

Solve real-world problems involving addition and subtraction of time intervals and find elapsed time.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U39	Measurement and Data Analysis - Elapsed Time on a Number Line	U39	Elapsed Time within One-Hour
		U39	Elapsed Time Across Hours

MA 3.3.3.f

Use concrete and pictorial models to measure areas in square units by counting square units
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Areas of Squares

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

MA 3.3.3.f

Use concrete and pictorial models to measure areas in square units by counting square units
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Finding the Area of Squares
		ISIP	Finding the Area of Polygons

MA 3.3.3.g

Find the area of a rectangle with whole-number side lengths by modeling with unit squares, and show that the area is the same as would be found by multiplying the side lengths.

$$
\text { MP } 1,2,3,4,5,6,7,8
$$

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Areas of Squares
		ISIP	Finding the Area of Squares
		ISIP	Finding the Area of Polygons

MA 3.3.3.h

Identify and draw rectangles with the same perimeter and different areas or with the same area and different perimeters.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U38	Measurement - Perimeter Word Problems	U38	Finding Perimeter

MA 3.3.3.h

Identify and draw rectangles with the same perimeter and different areas or with the same area and different perimeters.

MP 1, 2, 3, 4, 5, 6, 7, 8	Code	Teacher Resources	
Code	Digital Student Experience	U38	Finding Missing Side Lengths in Word Problems
		ISIP	Measuring Perimeter of Polygons

DATA: Students will communicate data analysis/probability concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines.
Representations: Students will create displays that represent data.

MA 3.4.1.a

Create scaled pictographs and scaled bar graphs to represent a data set-including data collected through observations, surveys, and experiments-with several categories.

MP 1, 2, 3, 4, 5, 6, 7, 8			
Code	Digital Student Experience	Code	Teacher Resources
U39	Measurement and Data Analysis - Two-Step Word Problems with Bar Graphs	U39	Solving Two-Step Problems Using Bar Graphs

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

Analysis \& Applications: Students will analyze data to address the situation.

MA 3.4.2.a

Solve problems and make simple statements about quantity differences (e.g., how many more and how many less) using information represented in pictographs and bar graphs.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U39	Measurement and Data Analysis - Two-Step Word Problems with Bar Graphs	U39	Solving Two-Step Problems Using Bar Graphs

Grade 4

NUMBER: Students will communicate number sense concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines.
Numeric Relationships: Students will demonstrate, represent, and show relationships among fractions and decimals within the base-ten number system.

MA 4.1.1.a

Read and write multi-digit whole number whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.

MP 1, 2, 3, 4, 5, 6, 7, 8	Code	Teacher Resources	
Code	Digital Student Experience	U40	Writing Expanded Form from Standard through Thousands and Millions
U40	Number Sense - Expanded Form to Thousands	U40	Writing Standard Form from Expanded through Thousands and Millions
U40	Number Sense - Expanded Form to Millions	U40	Writing Word Form from Expanded and Standard through Thousands and Millions
U40	Number Sense - Writing Expanded Form from Standard Form through Millions		

MA 4.1.1.b

Recognize a digit in one place represents ten times what it represents in the place to its right and $1 / 10$ what it represents in the place to its left.

$$
\text { MP } 1,2,3,4,5,6,7,8
$$

Code	Digital Student Experience	Code	Teacher Resources
U40	Number Sense - Expanded Form to Thousands		
U40	Number Sense - Standard Form to Thousands		

MA 4.1.1.f

Compare whole numbers up to one million and decimals through the hundredths place using $>$,

MP 1, 2, 3, 4, 5, 6, 7, 8	Code	Teacher Resources	
Code	Uigal Student Experience	U 43	Standard and Word Form of Decimals (0.01-0.09 and 0.1- $0.9)$
U43	Number Sense - Understanding Decimals (0.1-0.9 and $0.01-0.09)$	U 43	Standard and Word form of Decimals (0.10-0.90)
U43	Number Sense - Understanding Decimals 0.1-0.9	U 43	Standard and Word form of Decimals (0.01-1.99)
U43	Number Sense - Understanding Decimals with Visual Models 0.01-1.99	ISIP	Comparing and Ordering Decimals

MA 4.1.1.g

Round a multi-digit whole number to any given place.

MP 1, 2, 3, 4, 5, 6, 7, 8			
Code	Digital Student Experience	Code	Teacher Resources
U40	Number Sense - Rounding to the Nearest Thousand	U40	Rounding - Nearest Thousand
U40	Number Sense - Round to Any Place up to Thousands with Number Line	U40	Rounding - Nearest Ten, Hundred, Thousand
U40	Number Sense - Round to Any Place up to Thousands with Algorithm	U40	Rounding within Three- and Four-Digit Numbers - Number Line
U40	Number Sense - Rounding Zero	U40	Rounding within Three- and Four-Digit Numbers - Abstract

MA 4.1.1.g

Round a multi-digit whole number to any given place.

MP 1, 2, 3, 4, 5, 6, 7, 8			
Code	Digital Student Experience	Code	Teacher Resources
		$\cup 40$	Zero as the Rounding Digit

MA 4.1.1.h

Use decimal notation for fractions with denominators of 10 or 100.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U43	Number Sense - Determine Equivalent Fractions (Tenths and Hundredths)	U43	Decimals as Fractions (Tenths and Hundredths)
U43	Number Sense - Determine Equivalent Fractions Using Models	U43	Expressing Equivalent Fractions with Denominators of Ten and One Hundred
		ISIP	Understand Decimal Numbers with Fractional Language
		ISIP	Fraction to Decimal Equivalence

MA 4.1.1.k

Compare and order fractions having unlike numerators and unlike denominators using visual representations (number line), comparison symbols and verbal reasoning (e.g., using benchmarks or common numerators or common denominators).

MP 1, 2, 3, 4, 5, 6, 7, 8	Code	Teacher Resources	
Code	Digital Student Experience	U43	Fraction Comparison Using Benchmark Fractions
U43	Number Sense - Comparing Fractions Using Benchmark Fractions	U43	Compare Fractions Using Symbols
U43	Number Sense - Comparing Fractions with Unlike Denominators	U43	Compare Fractions by Creating Common Denominators
		ISIP	Comparing Fractions
		ISIP	Using Area Models to Compare Fractions

MA 4.1.1.I

Decompose a fraction into a sum of fractions with the same denominator in more than one way and record each decomposition with an equation and a visual representation.

$$
\text { MP } 1,2,3,4,5,6,7,8
$$

Code	Digital Student Experience	Code	Teacher Resources
U43	Number Sense - Decomposing Fractions	U43	Add Like Denominators of Ten and One Hundred
U43	Number Sense - Adding Fractions with Like Denominators of Ten and One Hundred	U43	Adding Denominators of Ten to Denominators of One Hundred
U43	Number Sense - Adding Fractions with Denominators of Ten and One Hundred		

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

Operations: Students will demonstrate the meaning of addition and subtraction of whole numbers and fractions and compute accurately.

MA 4.1.2.a

Add and subtract multi-digit numbers using the standard algorithm.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Adding Multi-Digit Numbers and Checking for Reasonableness

MA 4.1.2.c

Multiply a two-digit whole number by a two-digit whole number using the standard algorithm.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U41	Computations and Algebraic Thinking - Multiply Two-Digit Numbers with Models	U41	Two-Digit by Two-Digit Concrete Multiplication

MA 4.1.2.e

Use drawings, words, and symbols to explain the meaning of addition and subtraction of fractions with like denominators.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U43	Number Sense - Decomposing Fractions	$U 43$	Add Like Denominators of Ten and One Hundred

MA 4.1.2.e

Use drawings, words, and symbols to explain the meaning of addition and subtraction of fractions with like denominators.

MP 1, 2, 3, 4, 5, 6, 7, 8	Code	Teacher Resources	
Code	Digital Student Experience	U43	Adding Denominators of Ten to Denominators of One Hundred
U43	Number Sense - Adding Fractions with Like Denominators of Ten and One Hundred		
U43	Number Sense - Adding Fractions with Denominators of Ten and One Hundred		

MA 4.1.2.f

Add and subtract fractions and mixed numbers with like denominators.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U43	Number Sense - Decomposing Fractions	U43	Add Like Denominators of Ten and One Hundred
U43	Number Sense - Adding Fractions with Like Denominators of Ten and One Hundred	Adding Denominators of Ten to Denominators of One Hundred	
U43	Number Sense - Adding Fractions with Denominators of Ten and One Hundred		

MA 4.1.2.h

Determine the reasonableness of whole number products and quotients in real-world problems using estimation, compatible numbers, mental computations, or other strategies.

MP 1, 2, 3, 4, 5, 6, 7, 8	Code	Teacher Resources	
Code	Digital Student Experience	U42	Building and Solving Multistep Equations with All Operations
U42	Computations and Algebraic Thinking - Solve Multistep Word Problems	ISIP	Using Multiplication to Solve If-Then Word Problems

ALGEBRA: Students will communicate algebraic concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines.
Applications: Students will solve real-world problems involving equations with fractions.

MA 4.2.2.a			
Solve one- and two-step problems which use any or all of the four basic operations and include the use of a letter to represent the unknown quantity.			
MP 1, 2, 3, 4, 5, 6, 7, 8	Code	Teacher Resources	
Code	Digital Student Experience	U42	Building and Solving Multistep Equations with All Operations
U42	Computations and Algebraic Thinking - Solve Multistep Word Problems	ISIP	Using Multiplication to Solve If-Then Word Problems

MA 4.2.3.a

Solve real-world problems involving multi-step equations comprised of whole numbers using the four operations, including interpreting remainders

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U42	Computations and Algebraic Thinking - Solve Multistep Word Problems	U42	Building and Solving Multistep Equations with All Operations
		ISIP	Using Multiplication to Solve If-Then Word Problems

MA 4.2.3.b

Solve real-world problems involving addition and subtraction of fractions and mixed numbers with like denominators.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U43	Number Sense - Decomposing Fractions	U43	Add Like Denominators of Ten and One Hundred
U43	Number Sense - Adding Fractions with Like Denominators of Ten and One Hundred	Adding Denominators of Ten to Denominators of One Hundred	
U43	Number Sense - Adding Fractions with Denominators of Ten and One Hundred		

GEOMETRY: Students will communicate geometric concepts and measurement concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines.

Characteristics: Students will identify and describe geometric characteristics and create two and threedimensional shapes.

MA 4.3.1.a

Recognize angles as geometric shapes that are formed where two rays share a common endpoint.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U45	Geometry - Measuring Angles with a Protractor	U45	Measuring Angles with a Protractor
		ISIP	Line and Angle Identification

MA 4.3.1.b
 Classify an angle as acute, obtuse, or right. MP 1, 2, 3, 4, 5, 6, 7, 8 Code Teacher Resources Code Digital Student Experience U45 Measuring Angles with a Protractor ISIP Line and Angle Identification

MA 4.3.1.c

Identify and draw points, lines, line segments, rays, angles, parallel lines, perpendicular lines, and intersecting lines, and recognize them in twodimensional figures.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		U45	Measuring Angles with a Protractor
		ISIP	Line and Angle Identification

MA 4.3.1.f

Measure angles in whole number degrees using a protractor.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U45	Geometry - Measuring Angles with a Protractor	U45	Measuring Angles with a Protractor
		ISIP	Line and Angle Identification

MA 4.3.1.g

Sketch angles of a specified measure.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U45	Geometry - Measuring Angles with a Protractor	U45	Measuring Angles with a Protractor
		ISIP	Line and Angle Identification

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

Measurement: Students will perform and compare measurements and apply formulas.

MA 4.3.3.a

Apply perimeter and area formulas for rectangles.

MP 1, 2, 3, 4, 5, 6, 7, 8	Code	Teacher Resources	
Code	Digital Student Experience	ISIP	Finding Area of Rectangles and Squares by Using Multiplication
		ISIP	Quantifying Areas of Rectangles and Squares
		ISIP	Connecting Multiplication and Area
		ISIP	Decomposing Figures to Find the Area of Polygons

MA 4.3.3.b

Identify and use the appropriate tools, operations, and units of measurement, both customary and metric, to solve real-world problems involving time, length, weight, mass, capacity, and volume.

MP 1, 2, 3, 4, 5, 6, 7, 8	Code	Teacher Resources	
Code	Digital Student Experience	U44	Converting Units of Measurement in Word Problems
U44	Measurement and Data Analysis - Word Problems with Various Measurements	ISIP	Measuring Length to the Nearest Quarter Inch
		ISIP	Calculating Elapsed Time

MA 4.3.3.c

Generate simple conversions from a larger unit to a smaller unit within the customary and metric systems of measurement.

MP 1, 2, 3, 4, 5, 6, 7, 8			
Code	Digital Student Experience	Code	Teacher Resources
U44	Measurement and Data Analysis - Word Problems with Various Measurements	U44	Converting Units of Measurement in Word Problems

DATA: Students will communicate data analysis/probability concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines.

Representations: Students will create displays that represent data.

MA 4.4.1.a

Represent data using line plots where the horizontal scale is marked off in appropriate units (e.g., whole numbers, halves, quarters, or eighths).

MP 1, 2, 3, 4, 5, 6, 7, 8	Code	Teacher Resources	
Code	Digital Student Experience	U45	Line Plots with Fractional Data
U45	Data Analysis - Line Plots with Fractional Data	U45	Finding Scales of Line Plots
U45	Data Analysis - Analyzing Line Plots		

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

Analysis \& Applications: Students will analyze data to address the situation.

MA 4.4.1.a

Solve problems involving addition or subtraction of fractions using information presented in line plots.

MP 1, 2, 3, 4, 5, 6, 7, 8			
Code	Digital Student Experience	Code	Teacher Resources
U45	Data Analysis - Line Plots with Fractional Data	U45	Line Plots with Fractional Data
U45	Data Analysis - Analyzing Line Plots	U45	Finding Scales of Line Plots

Grade 5

NUMBER: Students will communicate number sense concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines.

Numeric Relationships: Students will demonstrate, represent, and show relationships among whole numbers, fractions, and decimals within the base-ten number system.

MA 5.1.1.a

Determine multiple equivalent representations for whole numbers and decimals through the thousandths place using standard form, word form, and expanded notation.

MP 1, 2, 3, 4, 5, 6, 7, 8	Code	Teacher Resources	
Code	Digital Student Experience	U46	Decimal Grids and Place Value Mats
U46	Number Sense - Compare Decimals Visually on the Number Line	U46	Decimal Comparison on the Number Line
U46	Number Sense - Compare Tenths and Hundredths on a Number Line	U46	Abstract Decimal Comparison
U46	Number Sense - Compare Tenths and Hundredths (with visual aids)	U46	Decimals with Whole Number Comparison
U46	Number Sense - Abstract Comparison of Decimals to Thousandths		

MA 5.1.1.b

Determine multiple equivalent representations for whole numbers and decimals through the thousandths place using standard form, word form, and expanded notation.

Code	Digital Student Experience	Code	Teacher Resources
U46	Number Sense - Compare Decimals Visually on the Number Line	U46	Decimal Grids and Place Value Mats
U46	Number Sense - Compare Tenths and Hundredths on a Number Line	U46	Decimal Comparison on the Number Line
U46	Number Sense - Compare Tenths and Hundredths (with visual aids)	U46	Abstract Decimal Comparison
U46	Number Sense - Abstract Comparison of Decimals to Thousandths	U46	Decimals with Whole Number Comparison

MA 5.1.1.c

Round whole numbers and decimals to any given place.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U46	Number Sense - Round Decimals on the Number Line	U46	Rounding Decimals on the Number Line
U46	Number Sense - Round Decimals with the Rounding Algorithm	U46	Rounding Decimals with the Rounding Algorithm
U46	Number Sense - Round Decimals with Whole Numbers		

MA 5.1.1.e

Write powers of 10 with exponents.				
MP 1, 2, 3, 4, 5, 6, 7, 8				
Code	Digital Student Experience	Code	Teacher Resources	
U46	Number Sense - Exploring Powers of Ten	U46	Multiplying Decimals by Ten and One Hundred	
U46	Number Sense - Multiplying and Dividing Decimals by Powers of Ten	U46	Dividing Decimals by Ten and One Hundred	
U46	Number Sense - Multiplying Decimals by Ten and One Hundred	U46	Multiplying and Dividing Decimals by Powers of Ten	
U46	Number Sense - Dividing Decimals by Ten and One Hundred	U46	Exploring Powers of Ten	

Operations: Students will demonstrate the meaning of operations and compute accurately with whole numbers, fractions, and decimals.

MA 5.1.1.b

Find whole number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U47	Computations and Algebraic Thinking - Divide Three-Digit by Two-Digit Numbers with an Area Model	U47	Four-Digit by Two-Digit Division (Partial Quotients)
U47	Computations and Algebraic Thinking - Divide Four-Digit Numbers by Two-Digit Numbers	ISIP	Estimating Quotients Using Compatible Numbers

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

MA 5.1.1.b

Find whole number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. lllustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Using Models to Practice Extended Division Facts
		ISIP	Models for Understanding Remainders

MA 5.1.1.c

MP 1, 2, 3, 4, 5, 6, 7, 8			
Code	Digital Student Experience	Code	Teacher Resources
U48	Computations and Algebraic Thinking - Multiply by Fractions Less than One	U48	Multiplying by Fractions Less Than One
U48	Computations and Algebraic Thinking - Multiply by Fractions Greater than One	U48	Multiplying by Fractions Less Than One (Extra Practice)
U50	Measurement and Data Analysis - Multiply Fractions to Find the Area of a Rectangle	U48	Multiplying Fractions Less Than One with Improper Fractions
		U48	Multiplying Whole Numbers by Fractions Less Than One
		U48	Multiplying Whole Numbers by Fractions Greater Than One
		U50	Area of a Rectangle with Fractional Side Lengths

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

MA 5.1.1.d

Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U46	Computations and Algebraic Thinking - Visual Representation for Multiplying Decimals	U46	Multiplying Decimals by Ten and One Hundred
U46	Computations and Algebraic Thinking - Multiply Decimals by Powers of Ten	U46	Dividing Decimals by Ten and One Hundred
U46	Computations and Algebraic Thinking - Divide Decimals by Powers of Ten	U46	Multiplying and Dividing Decimals by Powers of Ten
U46	Computations and Algebraic Thinking - Multiply and Divide Decimals by Powers of Ten	U47	Decimal Addition
		U47	Decimal Subtraction
		U47	Concrete Decimal Division
		U47	Representational Decimal Division
	ISIP	Calculating Reasonable Estimates of Decimal Number Sums	
	Adding and Subtracting Decimal Numbers in a Word Problem		

MA 5.1.2.g

Add, subtract, multiply, and divide decimals to the hundredths using concrete models or drawings and strategies based on place value, properties of operations (i.e. Commutative, Associative, Distributive, Identity, Zero), and/or relationships between operations.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U46	Computations and Algebraic Thinking - Visual Representation for Multiplying Decimals	U46	Multiplying Decimals by Ten and One Hundred
U46	Computations and Algebraic Thinking - Multiply Decimals by Powers of Ten	U46	Dividing Decimals by Ten and One Hundred
U46	Computations and Algebraic Thinking - Divide Decimals by Powers of Ten	U46	Multiplying and Dividing Decimals by Powers of Ten
U46	Computations and Algebraic Thinking - Multiply and Divide Decimals by Powers of Ten	U47	Decimal Addition
		U47	Decimal Subtraction
		U47	Concrete Decimal Division
		U47	Representational Decimal Division
		U47	Decimal Division
		ISIP	Calculating Reasonable Estimates of Decimal Number Sums
		ISIP	Adding and Subtracting Decimal Numbers in a Word Problem

MA 5.1.2.h

Add and subtract fractions and mixed numbers with unlike denominators.

MP 1, 2, 3, 4, 5, 6, 7, 8	Code	Teacher Resources	
Code	Digital Student Experience	U48	Adding Fractions with Unlike Denominators
U48	Computations and Algebraic Thinking - Add Fractions with Unlike Denominators	ISIP	Adding and Subtracting Fractions with Unlike Denominators
U48	Computations and Algebraic Thinking - Subtract Fractions with Unlike Denominators		

MA 5.2.1.

Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, recognize an incorrect result $2 / 5+1 / 2=3 / 7$, by observing that $3 / 7<1 / 2$.

MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U48	Computations and Algebraic Thinking - Add Fractions with Unlike Denominators	U48	Adding Fractions with Unlike Denominators
U48	Computations and Algebraic Thinking - Subtract Fractions with Unlike Denominators	U48	Subtracting Fractions with Unlike Denominators
		ISIP	Adding and Subtracting Fractions with Unlike Denominators

MA 5.1.2.j

Multiply and divide by powers of 10.			
MP $1,2,3,4,5,6,7,8$			
Code	Digital Student Experience	Code	Teacher Resources
U46	Number Sense - Multiplying Decimals by Ten and One Hundred	U46	Multiplying Decimals by Ten and One Hundred
U46	Number Sense - Dividing Decimals by Ten and One Hundred	U46	Dividing Decimals by Ten and One Hundred
U46	Number Sense - Multiplying and Dividing Decimals by Powers of Ten	U46	Multiplying and Dividing Decimals by Powers of Ten

ALGEBRA: Students will communicate algebraic concepts using multiple representations to reason,

 solve problems, and make connections within mathematics and across disciplines.Algebraic Relationships: Students will demonstrate, represent, and show relationships with expressions and equations.

MA 5.2.1.a			
Form ordered pairs from a rule such as $y=2 x$, and graph the ordered pairs on a coordinate plane.			
MP 1, 2, 3, 4, 5, 6, 7, 8			
Code	Digital Student Experience		Code
U51	Computations and Algebraic Thinking - Comparing Points on a Coordinate Plane	U51	Plotting Points on a Coordinate Grid
		U51	Graphing and Analyzing Lines

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

Algebraic Processes: Students will apply the operational properties when evaluating expressions and solving equations.

MA 5.2.2.a			
Interpret and evaluate numerical or algebraic expressions using order of operations (excluding exponents).			
MP 1, 2, 3, 4, 5, 6, 7, 8	Code	Teacher Resources	
Code	Digital Student Experience	U49	Evaluating Numerical Expressions with Parentheses
U49	Computations and Algebraic Reasoning - Evaluate Numerical Expressions with Parentheses	U49	Identifying Expressions in Scenarios
U49	Computations and Algebraic Reasoning - Interpret Numerical Expressions with Parentheses	U49	Writing Expressions from Words - Addition and Subtraction
U49	Computations and Algebraic Reasoning - Write Numerical Expressions from Words	U49	Writing Expressions from Words - Subtraction

MA 5.2.3.a

Solve real-world problems involving addition and subtraction of fractions and mixed numbers with like and unlike denominators.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U48	Computations and Algebraic Thinking - Add Fractions with Unlike Denominators	U48	Adding Fractions with Unlike Denominators
U48	Computations and Algebraic Thinking - Subtract Fractions with Unlike Denominators	U48	Subtracting Fractions with Unlike Denominators

MA 5.2.3.a

Solve real-world problems involving addition and subtraction of fractions and mixed numbers with like and unlike denominators.

MP 1, 2, 3, 4, 5, 6, 7, 8			
Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Adding and Subtracting Fractions with Unlike Denominators

GEOMETRY: Students will communicate geometric concepts and measurement concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines.

Characteristics: Students will identify and describe geometric characteristics and create two and threedimensional shapes.

MA 5.3.1.c

Justify the classification of two-dimensional figures based on their properties.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Analyzing Properties of Two- and Three-Dimensional Figures

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

Coordinate Geometry: Students will determine location, orientation, and relationships on the coordinate plane.

MA 5.3.2.a
Identify the origin, x axis, and y axis of the coordinate plane.
MP 1, 2, 3, 4, 5, 6, 7, 8
Code
Digital Student Experience
G51

MA 5.3.2.b

Graph and name points in the first quadrant of the coordinate plane using ordered pairs of whole numbers.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U51	Geometry - Graph Points in a Coordinate Plane	U51	Plotting Points on a Coordinate Grid
		ISIP	Identifying and Plotting Ordered Pairs on the Coordinate Plane

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

Measurement: Students will perform and compare measurements and apply formulas.

MA 5.3.3.a

Recognize that solid figures have volume that is measured in cubic units.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U50	Measurement - Volume of Irregular Figures	U50	Volume of Rectangular Prisms
		U50	Volume of Rectangular Prisms
		ISIP	Integrating Fact Practice and Volume

MA 5.3.3.b

Use concrete models to measure the volume of rectangular prisms in cubic units by counting cubic units.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
U50	Measurement - Volume of Irregular Figures	U50	Volume of Rectangular Prisms
		U50	Volume of Rectangular Prisms
		ISIP	Integrating Fact Practice and Volume

MA 5.3.3.c

Generate conversions within the customary and metric systems of measurement.
MP 1, 2, 3, 4, 5, 6, 7, 8

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Converting Standard Units of Measurement
		ISIP	Performing Customary Measurement Conversions

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

Appendix

Classroom Resource

General Graphic Organizers	
Code	
CR	Dot Paper
CR	Frayer Model
CR	Frayer Model (multiple)
CR	Grid Paper
CR	Grid Paper (cm)
CR	Grid Paper (in)
CR	If-Then Diagram (Large)
CR	If-Then Diagrams
CR	Multiple Number Lines (10-100)
CR	Number Cards (1-10)
CR	Number Cards (1-20)
CR	Number Line 0-10 (Labeled and Blank)
CR	Number Line 0-100 (Labeled and Blank)
CR	Number Line 0-20 (Labeled and Blank)
CR	Number Line 0-50 (Labeled and Blank)

General Graphic Organizers	
Code	
CR	Place Value Mat: 3-Column (Blank)
CR	Place Value Mat: 4-Column (Blank)
CR	Ten Frame
CR	Three-Digit Number Cards
CR	Types of Word Problems Anchor Chart

Number Sense	
Code	
CR	100 Chart
CR	120 Chart
CR	Base Ten Block Cards (0-50)
CR	Base Ten Block Cards (Multiples of Ten)
CR	Counting Strips (1-10)
CR	Counting Strips (1-20)
CR	Decimal Cards
CR	Decimal Grid: Thousandths
CR	Decimal Grids: Tenths and Hundredths
CR	Decimal Models: One Whole through Thousandths

Number Sense	
Code	
CR	Decimal Place Value: Grid and Chart - Hundredths
CR	Decimal Place Value: Grid and Chart - Tenths
CR	Decimal Place Value: Grid and Chart - Thousandths
CR	Even and Odd Chart
CR	Fraction Bars
CR	Fraction Equivalency Cards
CR	Fraction Model Graphic Organizer
CR	Multiple Representations of Numbers (1-10)
CR	Place Value Anchor Chart: Tens and Ones
CR	Place Value Mat: Multiple Representations to Millions (Labeled)
CR	Place Value Mat: Multiple Representations to Thousands (Labeled)
CR	Place Value Mat: Tens and Ones (Labeled)
CR	Place Value Word Cards
CR	Ten Frame Dot Cards (Large)
CR	Ten Frame Dot Cards (Small)

Computations and Algebraic Thinking	
Code	
CR	Algebra Tiles
CR	Algebraic Strip Diagrams Resources
CR	Coordinate Plane
CR	Missing Factor Cards
CR	Multiplication/Division Fact Family Template
CR	Operation Symbol Cards
CR	Part Part Whole Mat
CR	Problem Solving Cards - Addition and Subtraction
CR	Subitizing Cards (1-5)

Measurement	
Code	Resources
CR	Customary Unit Conversion Cards - Linear Measurement
CR	Customary Unit Conversion Cards - Liquid Measurement
CR	Linear Measurement Bundle (Includes the following five resources)
CR	Linear Measurement Anchor Chart
CR	Linear Measurement Body Benchmarks Anchor Chart
CR	Linear Measurement Graphic Organizer

Measurement		
Code		Resources
CR	Linear Measurement Steps Anchor Chart	
CR	Linear Measurement Yards vs. Meters Anchor Chart	

Data Analysis	
Code	
CR	Analyzing Line Plots

Geometry		
Code		Teacher Resources
CR	Three-Dimensional Figure Nets	
CR	Two-Dimensional Shapes	

Parent Portal Lessons

Early Math PK-1				
Code				
PP	Fact Practice: Addition Fast Track Resources			
PP	Fact Practice: Addition Road Racing			
PP	Fact Practice: Building Sums with Dice			

Early Math PK-1	
Code	
PP	Fact Practice: Choose the Operation (Addition and Subtraction)
PP	Fact Practice: Counting to Answer Math Questions
PP	Fact Practice: Matching Numerals to Quantities
PP	Fact Practice: Recognizing, Ordering, and Counting
PP	Fact Practice: Shake It! Make It! Solve It! (Addition)
PP	Fact Practice: Skip Counting Raceway (Skip Counting by Fives and Tens)
PP	Fact Practice: Skip Counting Raceway (Skip Counting by Twos)
PP	Fact Practice: Sticky Sums
PP	Fact Practice: Subtraction Fast Track
PP	Fact Practice: Subtraction Road Racing
PP	Fact Practice: Write, Tally, Draw (Addition)
PP	Practice Sorting by Attributes

Istation Math 2-5

Code	Teacher Resources
PP	Fact Practice: Adding on a Number Line
PP	Fact Practice: Addition and Subtraction Fact Families
PP	Fact Practice: Choose the Operation (Addition and Subtraction)

Istation Math 2-5	
Code	
PP	Fact Practice: Choose the Operation (Multiplication and Division)
PP	Fact Practice: Fact Family Dominoes (Addition/Subtraction)
PP	Fact Practice: Identifying Halves, Thirds, Fourths
PP	Fact Practice: Multiplication and Division Fact Family Triangles
PP	Fact Practice: Multiplication Fast Track
PP	Fact Practice: Multiply Then Add
PP	Fact Practice: Multominoes
PP	Fact Practice: Shake It! Make It! Solve It! (Multiplication)
PP	Fact Practice: Sticky Products
PP	Fact Practice: Subtracting on a Number Line
PP	Fact Practice: Two-Digit Comparison: Who Has More?
PP	Fact Practice: Two-Digit Comparison: Who Has Less?
PP	Fact Practice: Three- and Four-Digit Comparison: Who Has More?
PP	Fact Practice: Three- and Four-Digit Comparison: Who Has Less?
PP	Fact Practice: Understanding Decimal Numbers
PP	Fact Practice: Write, Expand, Sketch
PP	Fact Practice: Writing Expressions from Scenarios

Istation Math Curriculum Correlated to the Nebraska Mathematics Standards

Istation Math 2-5

Code	Teacher Resources
PP	Practice Linear Measurement Scavenger Hunt (Centimeter)
PP	Practice Linear Measurement Scavenger Hunt (Inches)
PP	Practice Plotting Points on a Coordinate Plane

