

Istation Math Curriculum Correlated to the South Carolina
College– and Career–Ready Standards
Mathematics

Kindergarten – Grade 5

Contents

Power Path Featured Content	10
Newest Features	
Power Path Featured Content (Spanish)	
Newest Features	
Kindergarten	
Number Sense	15
K.NS.1	15
K.NS.2	
K.NS.3	17
K.NS.4	17
K.NS.5	18
K.NS.6	20
K.NS.8	20
Number Sense and Base Ten	21
K.NSBT.A.1	21
Algebraic Thinking and Operations	21
K.ATO.1	21
K.ATO.2	23
K.ATO.3	22
K.ATO.4	25
Geometry	27
K.G.3	27
K.G.4	27
Measurement and Data Analysis	28

K.MD.2	28
K.MD.3	28
Grade 1	29
Number Sense and Base Ten	29
1.NSBT.1	29
1.NSBT.2	30
1.NSBT.3	30
1.NSBT.4	31
Algebraic Thinking and Operations	32
1.ATO.1	32
1.ATO.2	34
1.ATO.3	34
1.ATO.4	35
1.ATO.6	35
1.ATO.8	
Geometry	37
1.G.1	37
1.G.3	38
Measurement and Data Analysis	38
1.MDA.3	
1.MDA.4	39
1.MDA.5	39
1.MDA.6	40
Grade 2	41
Number Sense and Base Ten	41

	2.NSBT.1	41
	2.NSBT.3	42
	2.NSBT.4	43
	2.NSBT.5	43
	2.NSBT.7	45
Alg	ebraic Thinking and Operations	46
	2.ATO.1	46
	2.ATO.2	47
	2.ATO.3	48
	2.ATO.4	48
Ge	ometry	49
	2.G.3	49
Me	asurement and Data Analysis	49
	2.MDA.1	
	2.MDA.2	50
	2.MDA.4	50
	2.MDA.5	51
	2.MDA.6	51
	2.MDA.7	52
	2.MDA.10	52
Grade	e 3	53
Nui	mber Sense and Base Ten	53
	3.NSBT.1	53
	3.NSBT.2	53
	3.NSBT.3	54

Number Sense – Fractions	34
3.NSF.1	54
3.NSF.2	55
3.NSF.3	56
Algebraic Thinking and Operations	57
3.ATO.1	57
3.ATO.2	58
3.ATO.3	58
3.ATO.4	59
3.ATO.5	60
3.ATO.6	60
3.ATO.7	61
3.ATO.8	62
3.ATO.9	63
Geometry	63
3.G.1	63
3.G.2	64
Measurement and Data Analysis6	65
3.MDA.1	65
3.MDA.4	65
3.MDA.5	66
3.MDA.6	66
Grade 4	68
Number Sense and Base Ten	68
4.NSBT.1	68

	4.NSBT.2	68
	4.NSBT.3	69
	4.NSBT.4	70
	4.NSBT.5	70
Num	nber Sense – Fractions	70
	4.NSF.1	70
	4.NSF.2	71
	4.NSF.3	72
	4.NSF.5	73
Alge	ebraic Thinking and Operations	73
	4.ATO.1	73
	4.ATO.2	74
	4.ATO.3	74
Geo	metry	75
	4.G.1	75
	4.G.2	75
Mea	surement and Data Analysis	76
	4.MDA.1	76
	4.MDA.2	76
	4.MDA.3	76
	4.MDA.4	77
	4.MDA.5	77
	4.MDA.6	78
Grade	5	79
Num	nber Sense and Base Ten	79

	5.NSBT.1	79
	5.NSBT.2	79
	5.NSBT.3	80
	5.NSBT.6	81
	5.NSBT.7	82
	Number Sense– Fractions	82
	5.NSF.1	82
	5.NSF.2	83
	5.NSF.4	83
	5.NSF.5	84
	5.NSF.6	85
	Algebraic Thinking and Operations	86
	5.ATO.1	86
	5.ATO.2	86
	5.ATO.3	87
	Geometry	88
	5.G.1	88
	5.G.2	88
	5.G.3	89
	5.G.4	89
	Measurement and Data Analysis	90
	5.MDA.1	90
	5.MDA.3	90
	5.MDA.4	91
Α	ppendix	92

Classroom Resource	92
General Graphic Organizers	92
Number Sense	93
Computations and Algebraic Thinking	95
Measurement	95
Data Analysis	96
Geometry	
Parent Portal Lessons	
Early Math PK-1	96
Istation Math 2-5	

Istation Math Curriculum Correlated to the South Carolina College– and Career–Ready Standards

K–5 Standards for Mathematical Practices (MP)

As stated in the South Carolina College and Career–Ready Standards for Mathematics, "The Mathematical Process Standards demonstrate the ways in which students develop conceptual understanding of mathematical content and apply mathematical skills." Each applicable Mathematical Process Standard is listed below the correlation with the corresponding code, MP1–7.

- 1. Make sense of problems and persevere in solving them.
- 2. Reason both contextually and abstractly.
- 3. Use critical thinking skills to justify mathematical reasoning and critique the reasoning of others.
- 4. Connect mathematical ideas and real-world situations through modeling.
- 5. Use a variety of mathematical tools effectively and strategically.
- 6. Communicate mathematically and approach mathematical situations with precision.
- 7. Identify and utilize structure and patterns.

The following legend outlines the Codes found next to each Digital Student Experience and related Teacher Resources.

Code Legend		
U Unit		
ISIP	Istation's Indicators of Progress	
EM	Early Math	
AR	Additional Resource	
CR	Classroom Resource	
FP	Fact Practice	
PP	Parent Portal	

Power Path Featured Content

i ower i atti i eatured content					
Newest Features					
Power Path is the next generation of activities for Istation, bringing a more modern approach to the user experience. These activities contain a greater degree of adaptability, many more questions, and a greater sense of agency for the student.					
MP 1, 2,	3, 4, 5, 6, 7				
Code	Digital Student Experience	Code	Teacher Resources		
K.NS.1					
		U13-15	Odd One Out - Counting		
K.NS.6					
U9-11	Number Sense – Comparison Cards: Comparing Groups or Numbers	U9-11	More or Less? Which is Best?		
K.NS.7					
U9-11	Number Sense – Comparison Cards: Comparing Groups or Numbers	U9-11	More or Less? Which is Best?		
K.NSBT.1					
		U7-8	Make It, Break It		
K.G.1					
			Shape Simon Says		
K.G.3					
			Shape Families		
K.G.5					
U4-6	Geometry – <u>Sweet Shapes</u>				

Istation Math Curriculum Correlated to the South Carolina College- and Career-Ready Standards

Newest Features

Power Path is the next generation of activities for Istation, bringing a more modern approach to the user experience. These activities contain a greater degree of adaptability, many more questions, and a greater sense of agency for the student.

MP	1	2	3	4	5	6	7
1711		∠.	Ο.	т.	Ο.	v.	•

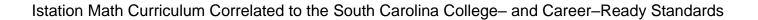
Code	Digital Student Experience		Teacher Resources		
1.NSBT.1					
		U16-17	One Hundred Twenty is Plenty		
1.NSBT.2					
		U12-13	Two-Digit Memory		
1.NSBT.3					
U14-16	Number Sense – Comparison Cards: Comparing Two- Digit Numbers	U14-16	Dare to Compare Two-Digit Numbers		
1.G.1					
U20-23	Geometry – Sweet Shapes				
2.NSBT.1					
		U30-31	Make It, Break It, Toss It		
2.NSBT.2					
		U24-30	Skip Counting with Patterns		
2.NSBT.4					
U33-35	Number Sense – Comparison Cards: Comparing Three- Digit Numbers	U33-35	Dare to Compare Three-Digit Numbers		
3.NSBT.1					

Istation Math Curriculum Correlated to the South Carolina College- and Career-Ready Standards

Newest Features

Power Path is the next generation of activities for Istation, bringing a more modern approach to the user experience. These activities contain a greater degree of adaptability, many more questions, and a greater sense of agency for the student.

Code	Digital Student Experience		Teacher Resources	
U37-39	U37-39 Number Sense – Pyramid Pinball: Rounding to the Nearest 10 or 100		Round and Round We Go (Whole Numbers)	
3.G.1				
			Quads Quads	
4.NSBT.2				
U41-43	Number Sense – Comparison Cards: Comparing Multi- Digit Numbers		Dare to Compare Multi-Digit Numbers	
4.NSBT.3				
U42-44	Number Sense – Pyramid Pinball: Rounding to Any Place	U42-44	Round and Round We Go (Multi-Digit) Numbers	
5.NSBT.3				
U47-49	Number Sense – Comparison Cards: Comparing Decimal Numbers	U47-49	Dare to Compare Decimal Numbers	
5.NSBT.4				
U48-50	Number Sense – Pyramid Pinball: Rounding Decimals	U48-50	Round and Round We Go (Decimal) Numbers	


Power Path Featured Content (Spanish)

Newest Features

Power Path is the next generation of activities for Istation, bringing a more modern approach to the user experience. These activities contain a greater degree of adaptability, many more questions, and a greater sense of agency for the student.

MD	1	2	2	1	_	6	7
MP	Ι,	۷,	J,	4,	Ο,	Ο,	1

Code	Digital Student Experience	Code	Teacher Resources
K.NS.6			
U9-11	Tarjetas de comparación - Comparando grupos o números	U9-11	¿Más o menos? ¿Cuál es mejor?
K.NS.7			
		U9-11	¿Más o menos? ¿Cuál es mejor?
1.NSBT.3			
U14-16	Tarjetas de comparación - Comparando números de dos dígitos	U14-16	Atrévete a comparar (Números de dos dígitos)
2.NSBT.4			
U33-35	Tarjetas de comparación - Comparando números de tres dígitos	U33-35	Atrévete a comparar (Números de tres dígitos)
3.NSBT.1			
		U37-39	Dando y dando la vuelta (Números Enteros)
4.NSBT.2			
U41-43	Tarjetas de comparación - Comparando números de múltiples dígitos	U42-44	Atrévete a comparar (Numéros de dígitos múltiples)
4.NSBT.3			

Newest Features

Power Path is the next generation of activities for Istation, bringing a more modern approach to the user experience. These activities contain a greater degree of adaptability, many more questions, and a greater sense of agency for the student.

MP	1.	2.	3.	4.	5.	6.	7
	٠,	-,	٠,	٠,	-,	-,	

Code	Digital Student Experience	Code	Teacher Resources	
		U42-44	Dando y dando la vuelta (Números de dígitos múltiples)	
5.NSBT.3				
U47-49	Tarjetas de comparación - Comparando números decimales	U47-49	Atrévete a comparar (Decimales)	
5.NSBT.4				
		U48-50	Dando y dando la vuelta (Decimales)	

Kindergarten

Number Sense

K.NS.1

Count forward by ones and tens to 100.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U14	Number Sense – "EZ With A Rock and Roll Beat" (1–100)	U14	One Hundred Is a Lot
U14	Number Sense – Identifying Numbers (1–100)	U14	Roll-Count-Cover – Skip Counting by Tens
U14	Number Sense – Identify Missing Numbers (1–100)	U21	The Arrow Says (1-100)
U14	Number Sense – Number Sequence (1–100)	U23	Decade Numbers
U14	Number Sense – "Hens by Tens" (up to 100)		
U14	Number Sense – Count the Hen Amount (up to 100)		
U14	Number Sense – Count Hens to the Target (up to 100)		
U14	Number Sense – Choose the Hen Amount (up to 100)		

K.NS.2

Count forward by ones beginning from any number less than 100

Code	Digital Student Experience	Code	Teacher Resources
U6	Number Sense – "EZ With A Rock and Roll Beat" (1–20)	U6	Count with Me (1-20)

K.NS.2

Count forward by ones beginning from any number less than 100

Code	Digital Student Experience	Code	Teacher Resources
U6	Number Sense – Identifying Numbers (1–20)	U8	Counting Sticks (1-20)
U6	Number Sense – Identify Missing Numbers (1–20)	U8	Counting Objects (1-20)
U6	Number Sense – Number Sequence (1–20)	U14	One Hundred Is a Lot
U7	Number Sense – "EZ With A Rock and Roll Beat" (1–30)	U14	Roll-Count-Cover – Skip Counting by Tens
U7	Number Sense – Identifying Numbers (1–30)	U18	Counting Memory
U7	Number Sense – Identify Missing Numbers (1–30)	U21	The Arrow Says (1-100)
U7	Number Sense – Number Sequence (1–30)	U23	Decade Numbers
U8	Number Sense – "EZ With A Rock and Roll Beat" (1–50)	ISIP	Set Stories
U8	Number Sense – Identifying Numbers (1–50)	ISIP	Ten Frame Puzzles (1-20)
U8	Number Sense – Identify Missing Numbers (1–50)	ISIP	Total Amount in a Scattered Group
U8	Number Sense – Number Sequence (1–50)	ISIP	Understanding Ordinal Numbers
U14	Number Sense – "EZ With A Rock and Roll Beat" (1–100)		
U14	Number Sense – Identifying Numbers (1–100)		
U14	Number Sense – Identify Missing Numbers (1–100)		
U14	Number Sense – Number Sequence (1–100)		

K.NS.3

Read numbers from 0-20 and represent a number of objects 0-20 with a written numeral.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U11	Number Sense – "Writing Our Numbers"	U8	Counting Sticks (1-20)
U11	Number Sense – Writing Numbers Everywhere (1-10)	U8	Counting Objects (1-20)
U18	Number Sense – Write to Represent Numbers (0-20)	U10	Park the Car and Write (1-20)
		U11	Writing Numbers Everywhere (5-10)
		U11	Writing Numbers (10-20)

K.NS.4

Understand the relationship between number and quantity. Connect counting to cardinality by demonstrating an understanding that:

- a. The last number said tells the number of objects in the set (cardinality);
- b. The number of objects is the same regardless of their arrangement or the order in which they are counted (conservation of number);
- c. Each successive number name refers to a quantity that is one more and each previous number name refers to a quantity that is one less.

Code	Digital Student Experience	Code	Teacher Resources
U8	Number Sense – "Counting Cattle" (1–20)	U6	Count with Me (1-20)
U8	Number Sense – Counting in a Line (1–20)	U7	Counting a Scattered Static Group (1-10)
U8	Number Sense – Counting in an Array (1–20)	U8	Counting Sticks (1-20)

K.NS.4

Understand the relationship between number and quantity. Connect counting to cardinality by demonstrating an understanding that:

- a. The last number said tells the number of objects in the set (cardinality);
- b. The number of objects is the same regardless of their arrangement or the order in which they are counted (conservation of number);
- c. Each successive number name refers to a quantity that is one more and each previous number name refers to a quantity that is one less.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U8	Number Sense – Counting a Static Scattered Group (1–20)	U8	Counting Objects (1-20)
U10	Number Sense – "Counting Cattle" (1–20)	ISIP	Set Stories
U10	Number Sense – Counting in an Array (1–20)	ISIP	Ten Frame Puzzles (1-20)
		ISIP	Subitizing to Problem Solve

K.NS.5

Count to answer "how many?" questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1–20, count out that many objects.

Code	Digital Student Experience	Code	Teacher Resources
U6	Number Sense – "Counting Cattle" (1-10)	U6	Domino Dot Memory (1-10)
U6	Number Sense – Counting in a Line (1-10)	U7	Counting a Scattered Static Group (1-10)

Istation Math Curriculum Correlated to the South Carolina College- and Career-Ready Standards

K.NS.5

Count to answer "how many?" questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1–20, count out that many objects.

Code	Digital Student Experience	Code	Teacher Resources
U6	Number Sense – Counting a Static Scattered Group (1-10)	U8	Counting Sticks (1-20)
U6	Number Sense – Remember the Counted Amount (1-10)	U8	Counting Objects (1-20)
U7	Number Sense – "Counting Cattle" (1-10)	U18	Counting Memory
U7	Number Sense – Counting Fingers (1-10)	ISIP	Set Stories
U7	Number Sense – Choose the Correct Amount (1-10)	ISIP	Ten Frame Puzzles (1-20)
U7	Number Sense – Counting a Static Scattered Group (1-10)	ISIP	Total Amount in a Scattered Group
U8	Number Sense – "Counting Cattle" (1-20)	ISIP	Multiple Representations of Numbers (1-10)
U8	Number Sense – Counting in a Line (1-20)	ISIP	Subitizing to Problem Solve
U8	Number Sense – Counting in an Array (1-20)		
U8	Number Sense – Counting a Scattered Static Group (1-20)		
U10	Number Sense – "Counting Cattle" (1-20)		
U10	Number Sense – Choose the Correct Amount (1-20)		
U10	Number Sense – Remember the Counted Amount (1-20)		

Istation Math Curriculum Correlated to the South Carolina College- and Career-Ready Standards

K.NS.6

Recognize a quantity of up to ten objects in an organized arrangement (subitizing).

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Subitizing to Problem Solve

K.NS.8

Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies

Code	Digital Student Experience	Code	Teacher Resources
		U6	Less/More/Equal Sets of Concrete Objects
		ISIP	Finding One More or One Less (1-20)
		ISIP	Comparing Groups of Objects (1-20)
		ISIP	Multiple Representations of Numbers (1-10)

Number Sense and Base Ten

K.NSBT.A.1

Compose and decompose numbers from 11 to 19 into ten ones and some further ones (e.g., by using objects or drawings), and record each composition or decomposition with a drawing or equation (such as 18 = 10 + 8); understand that these numbers are composed of ten ones and one, two, three, four, five, six, seven, eight, or nine ones.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
		U15	Digit Deal (1-50)
		U18	Decomposing House with Pictures
		U18	Decomposing House

Algebraic Thinking and Operations

K.ATO.1

Model situations that involve addition and subtraction within 10 using objects, fingers, mental images, drawings, acting out situations, verbal explanations, expressions, and equations.

Code	Digital Student Experience	Code	Teacher Resources
U9	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1-10)	U8	Parts and Wholes
U9	Computations and Algebraic Thinking – Part Part Whole Addition within 10	U10	Dogs and Cats on Mats (up to 10)
U10	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1-10)	U12	Ten or Not Ten

Model situations that involve addition and subtraction within 10 using objects, fingers, mental images, drawings, acting out situations, verbal explanations, expressions, and equations.

Code	Digital Student Experience	Code	Teacher Resources
U10	Computations and Algebraic Thinking – Part Part Whole Addition Stories	U18	Decomposing House with Pictures
U12	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1-10)	U18	Decomposing House
U12	Computations and Algebraic Thinking – Making Ten Using Tens Frames	U19	Relative Magnitude with Part Part Whole
U12	Computations and Algebraic Thinking – Identifying Addends Using Tens Frames	U20	Start, Change, Result
U13	Computations and Algebraic Thinking – "Chicago Pizza Blues" (within 10)	U20	Adding with Addend Cards
U13	Computations and Algebraic Thinking – Subtraction Within Ten	ISIP	Subtraction within Ten
U14	Computations and Algebraic Thinking – "Chicago Pizza Blues" (within 10)	ISIP	Addition Stories
U14	Computations and Algebraic Thinking – Whole Part Part Subtraction Stories (within 10)	ISIP	Subtraction Stories
U18	Number Sense – Decompose Numbers Less Than or Equal to Ten	ISIP	Count Back to Subtract
		ISIP	Ten Frame Addition

Solve real-world/story problems using objects and drawings to find sums up to 10 and differences within 10.

Code	Digital Student Experience	Code	Teacher Resources
U9	Computation and Algebraic Thinking – "Part–Part–Whole in New Orleans" (1–10)	U10	Dogs and Cats on Mats (up to 10)
U9	Computation and Algebraic Thinking – Part–Part–Whole Within 10	U12	Ten or Not Ten
U9	Computations and Algebraic Thinking – Addition Stories	U18	Decomposing House with Pictures
U12	Computation and Algebraic Thinking – "Part–Part–Whole in New Orleans" (1–10)	U18	Decomposing House
U12	Computations and Algebraic Thinking – Making Ten using Tens Frames	U19	Relative Magnitude with Part-Part-Whole
U12	Computations and Algebraic Thinking – Identifying Addends using Tens Frames	U19	Relative Magnitude with Part Part Whole
U13	Computation and Algebraic Thinking – "Chicago Pizza Blues" (within 10)	U20	Start, Change, Result
U13	Computation and Algebraic Thinking – Subtraction within 10	U20	Adding with Addend Cards
U14	Computation and Algebraic Thinking – "Chicago Pizza Blues" (within 10)	ISIP	Addition Stories
U14	Computation and Algebraic Thinking – Subtraction Stories (within 10)	ISIP	Subtraction Stories

Compose and decompose numbers up to 10 using objects, drawings, and equations.

Code	Digital Student Experience	Code	Teacher Resources
U9	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1-10)	U8	Parts and Wholes
U9	Computations and Algebraic Thinking – Part Part Whole Addition Stories	U9	Roll to Find the Whole
U10	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1-10)	U10	Dogs and Cats on Mats (up to 10)
U10	Computations and Algebraic Thinking – Part Part Whole Addition Stories	U12	Ten or Not Ten
U12	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1-10)	U13	Whole in the Hand
U12	Computations and Algebraic Thinking – Making Ten Using Tens Frames	U18	Decomposing House with Pictures
U12	Computations and Algebraic Thinking – Identifying Addends Using Tens Frames	U18	Decomposing House
U13	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1-10)	U19	Relative Magnitude with Part Part Whole
U13	Computations and Algebraic Thinking – Subtraction Within Ten	U20	Start, Change, Result
U14	Computations and Algebraic Thinking – "Chicago Pizza Blues" (within 10)	U20	Adding with Addend Cards

Compose and decompose numbers up to 10 using objects, drawings, and equations.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U14	Computations and Algebraic Thinking – Whole Part Part Subtraction Stories (within 10)	U22	Beading the Difference
U18	Number Sense – Decompose Numbers Less Than or Equal to Ten		

K.ATO.4

Create a sum of 10 using objects and drawing when given one of two addends 1–9.

Code	Digital Student Experience	Code	Teacher Resources
U9	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1-10)	U8	Parts and Wholes
U9	Computations and Algebraic Thinking – Part Part Whole Addition Stories	U9	Roll to Find the Whole
U10	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1-10)	U10	Dogs and Cats on Mats (up to 10)
U10	Computations and Algebraic Thinking – Part Part Whole Addition Stories	U12	Ten or Not Ten
U12	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1-10)	U13	Whole in the Hand

Create a sum of 10 using objects and drawing when given one of two addends 1–9.

Code	Digital Student Experience	Code	Teacher Resources
U12	Computations and Algebraic Thinking – Making Ten Using Tens Frames	U18	Decomposing House with Pictures
U12	Computations and Algebraic Thinking – Identifying Addends Using Tens Frames	U18	Decomposing House
U13	Computations and Algebraic Thinking – "Chicago Pizza Blues" (within 10)	U19	Relative Magnitude with Part Part Whole
U13	Computations and Algebraic Thinking – Subtraction Within Ten	U20	Start, Change, Result
U14	Computations and Algebraic Thinking – "Chicago Pizza Blues" (within 10)	U20	Adding with Addend Cards
U14	Computations and Algebraic Thinking – Whole Part Part Subtraction Stories (within 10)		
U18	Number Sense – Decompose Numbers Less Than or Equal to Ten		

Geometry

K.G.3

Classify shapes as two-dimensional/flat or three-dimensional/solid and explain the reasoning used.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U14	Geometry – Identify Three–Dimensional Shapes	U14	Shape Four-in-a-Row

K.G.4

Analyze and compare two- and three-dimensional shapes of different sizes and orientations using informal language.

Code	Digital Student Experience	Code	Teacher Resources
U1	Geometry – Identify Circles	U1	Identifying Two-Dimensional Shapes
U1	Geometry – Identify Squares	U3	We're Going on a Shape Hunt
U3	Geometry – Identify Triangles	U9	Considering Sizes of Shapes
U9	Geometry – Identify Shapes Regardless of Orientation	U9	Mighty Shape Match
U9	Geometry – Classify and Count by Attribute	U14	Shape Four-in-a-Row
U14	Geometry – Identify Three-Dimensional Shapes		

Measurement and Data Analysis

K.MD.2

Compare objects using words such as shorter/longer, shorter/taller, and lighter/heavier.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U10	Measurement – Comparing Objects by Length	U10	Directly Comparing Length
U10	Measurement – Comparing Objects by Weight	U10	Directly Comparing Weight
U15	Measurement – Comparing Objects by Height	U15	Directly Comparing Height
U15	Measurement – Comparing Objects by Capacity	U15	Which Holds More? Which Holds Less?

K.MD.3

Sort and classify data into 2 or 3 categories with data not to exceed 20 items in each category.

Code	Digital Student Experience	Code	Teacher Resources
U3	Data Analysis – Compare Data in Horizontal Picture Graphs	U12	Classify and Compare
U4	Data Analysis – Answer Data in Picture Graphs	U19	Graphing Tic-Tac-Toe
U19	Data Analysis – Represent and Interpret Data in Picture Graphs with Two or Three Columns		

Grade 1

Number Sense and Base Ten

1.NSBT.1

Extend the number sequence to:

- a. Count forward by ones to 120 starting at any number;
- b. Count by fives and tens to 100, starting at any number;
- c. Read, write and represent numbers to 100 using concrete models, standard form and equations in expanded form;
- a. Read and write in word form numbers zero through nineteen, and multiples of ten through ninety.

Code	Digital Student Experience	Code	Teacher Resources
U17	Number Sense – "Pattern of the Count" Count by Ones to 100	U14	One Hundred Is a Lot
U17	Number Sense – Place Value Rows (1-100)	U17	Digit Deal (1-100)
U17	Number Sense – Number Puzzle (1-100)	U18	Mixed-Up, Fixed-Up
U21	Number Sense – "Pattern of the Count" Count by Ones and Tens to 100	U21	The Arrow Says (1-100)
U21	Number Sense – Place Value Columns (1-100)	U23	Decade Numbers
U21	Number Sense – Number Puzzle (1-100)		

1.NSBT.2

Understand place value through 99 by demonstrating that:

- a. Ten ones can be thought of as a bundle (group) called a "ten".
- b. The tens digit in a two-digit number represents the number of tens and the ones digit represents the number of ones;
- c. Two–digit numbers can be decomposed in a variety of ways (e.g., 52 can be decomposed as 5 tens and 2 ones or 4 tens and 12 ones, etc.) and record the decomposition as an equation.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U23	Number Sense – Decade Numbers: Free Play Number Puzzle	U14	Roll-Count-Cover – Skip Counting by Tens
U23	Number Sense – Decade Numbers: Number Puzzle	U15	Digit Deal (1-50)
		U17	Digit Deal (1-100)
		U23	Decade Numbers
		ISIP	Base Ten Block Basics

1.NSBT.3

Compare two two-digit numbers based on the meanings of the tens and ones digits, using the words greater than, equal to, or less than.

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Base Ten Block Basics
		ISIP	Matching Numerals and Base Ten Blocks
		ISIP	Base Ten Block Comparison Game

1.NSBT.3

Compare two two-digit numbers based on the meanings of the tens and ones digits, using the words greater than, equal to, or less than.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Graphing Stories – Determining Most and Least

1.NSBT.4

Add through 99 using concrete models, drawings, and strategies based on place value to:

- a. Add a two-digit number and a one-digit number, understanding that sometimes it is necessary to compose a ten (regroup);
- b. Add a two-digit number and a multiple of 10.

Code	Digital Student Experience	Code	Teacher Resources
U20	Computations and Algebraic Thinking – "The Math Whiz"	U20	Doubles Facts
U20	Computations and Algebraic Thinking – Fact Strategies	U20	Turn Around Addition
U20	Computations and Algebraic Thinking – Commutative Property	U20	Grouping Groceries
U20	Computations and Algebraic Thinking – Associative Property	U20	Identity Property Go Fish!
U20	Computations and Algebraic Thinking – Identity Property	U24	Start, Change, Result! (within 20)
		ISIP	Fact Family Dominoes
		FP	Building Sums to Ten

1.NSBT.4

Add through 99 using concrete models, drawings, and strategies based on place value to:

- a. Add a two-digit number and a one-digit number, understanding that sometimes it is necessary to compose a ten (regroup);
- b. Add a two-digit number and a multiple of 10.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
		FP	Addition Fast Track
		FP	Subtraction Fast Track
		FP	Sticky Sums
		FP	Write, Tally, Draw
		FP	Shake It, Make It, Solve It (Addition)
		FP	Wipe Out

Algebraic Thinking and Operations

1.ATO.1

Solve real-world/story problems using addition (as a joining action and as a part-part-whole action) and subtraction (as a separation action, finding parts of the whole, and as a comparison) through 20 with unknowns in all positions.

Code	Digital Student Experience	Code	Teacher Resources
U16	Computations and Algebraic Thinking – Determine Missing Addend	U16	Beginning-Middle-End

Solve real—world/story problems using addition (as a joining action and as a part—part—whole action) and subtraction (as a separation action, finding parts of the whole, and as a comparison) through 20 with unknowns in all positions.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U19	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1-20)	U18	Decomposing House
U19	Computations and Algebraic Thinking – Part Part Whole Using Ovals	U19	Decomposing House with Pictures
U19	Computations and Algebraic Thinking – Part Part Whole Using Ten Frames	U22	Beading the Difference
U20	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1-20)	U24	Mystery in the Middle
U20	Computations and Algebraic Thinking – Addition Stories (1-20) Horizontal Equations	U24	Start, Change, Result (within 20)
U20	Computations and Algebraic Thinking – Addition Stories (1-20) Vertical Equations		
U22	Computations and Algebraic Thinking – Whole Part Part "Chicago Pizza Blues" (within 20)		
U22	Computations and Algebraic Thinking – Whole Part Part (within 20)		
U24	Computations and Algebraic Thinking – Subtraction Stories (within 20)		
U24	Computations and Algebraic Thinking – Determine the Unknown Whole Numbers in Subtraction Sentences		

Solve real-world/story problems that include three whole number addends whose sum is less than or equal to 20.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U20	Computations and Algebraic Thinking – Properties of Addition – Associative Property	ISIP	Associative Property of Addition

1.ATO.3

Apply commutative and associative properties of addition to find the sum (through 20) of two or three addends.

Code	Digital Student Experience	Code	Teacher Resources
U20	Computations and Algebraic Thinking – Commutative Property of Addition	U20	Doubles Facts
U20	Computations and Algebraic Thinking – Associative Property of Addition	U20	Turn Around Addition
U20	Computations and Algebraic Thinking – Identity Property of Addition	U20	Grouping Groceries
		U20	Identity Property Go Fish!
		ISIP	Counting on Cards
		ISIP	Fact Family Dominoes

Understand subtraction as an unknown addend problem.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U16	Computations and Algebraic Thinking – Determine the Unknown Whole Numbers in Addition Sentences	U16	Beginning-Middle-End
		U22	Beading the Difference
		U22	Mystery in the Middle

1.ATO.6

Demonstrate:

- a. Addition and subtraction through 20;
- b. Fluency with addition and related subtraction facts through 10.

Code	Digital Student Experience	Code	Teacher Resources
U10	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1-20)	U10	Dogs and Cats on Mats (up to Ten)
U10	Computations and Algebraic Thinking – Addition Stories	U12	Ten or Not Ten
U12	Computations and Algebraic Thinking – Identifying Addends using Tens Frames	U13	Whole in the Hand
U20	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1-20)	U20	Turn Around Addition

Demonstrate:

- a. Addition and subtraction through 20;
- b. Fluency with addition and related subtraction facts through 10.

Code	Digital Student Experience	Code	Teacher Resources
U20	Computations and Algebraic Thinking – Addition Stories (horizontal orientation)	U20	Grouping Groceries
U20	Computations and Algebraic Thinking – Addition Stories (vertical orientation)	U20	Identity Property Go Fish!
U20	Computations and Algebraic Thinking – "The Math Whiz"	U20	Doubles Facts
U20	Computations and Algebraic Thinking – Fact Strategies	ISIP	Building Sums to Ten
U20	Computations and Algebraic Thinking – Commutative Property	ISIP	Place Value of Tens and One
U20	Computations and Algebraic Thinking – Associative Property	ISIP	Fact Family Dominoes
U20	Computations and Algebraic Thinking – Identity Property	FP	Addition Fast Track
U10	Computations and Algebraic Thinking – "Part Part Whole in New Orleans" (1-20)	FP	Sticky Sums
U10	Computations and Algebraic Thinking – Addition Stories	FP	Write, Tally, Draw
		FP	Shake It, Make It, Solve It (Addition)
		FP	Wipe Out

Determine the missing number in addition and subtraction equations within 20.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U16	Computations and Algebraic Thinking – Determine the Unknown Whole Number in Addition Sentences	U16	Beginning-Middle-End
U24	Computations and Algebraic Thinking – Determine the Unknown Whole Number in a Subtraction Sentence	U24	Mystery in the Middle

Geometry

1.G.1

Distinguish between a two-dimensional shape's defining (e.g., number of sides) and non-defining attributes (e.g., color).

Code	Digital Student Experience	Code	Teacher Resources
U14	Geometry – Identify Three–Dimensional Shapes	U14	Shape Four-in-a-Row
U14	Geometry – Comparing Two–Dimensional Shapes in the Diner	U14	Odd One Out
U24	Geometry – Defining Attributes of Two–Dimensional Shapes	U24	Identifying Shapes

1.G.3

Partition two-dimensional shapes (i.e., square, rectangle, circle) into two or four equal parts.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U14	Geometry – Identify Halves and Fourths	U18	Fraction Four-in-a-Row

Measurement and Data Analysis

1.MDA.3

Use analog and digital clocks to tell and record time to the hour and half hour.

Code	Digital Student Experience	Code	Teacher Resources
U16	Measurement and Data Analysis – Tell Time to the Nearest Hour	U16	What Does the Clock Say?
U16	Measurement and Data Analysis – Tell and Write Time from Analog and Digital Clock to the Nearest Half Hour	U16	Roll the Clock
U19	Measurement and Data Analysis – Tell and Write Time from Analog/Digital Clocks to the Nearest Hour and Half Hour	U19	Set the Time and Go!

Collect, organize and represent data with up to three categories.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
		U19	Graphing Tic-Tac-Toe
		U19	Graphing Tic-Tac-Toe
		ISIP	Picture Graphs to the Rescue!
		ISIP	Analyze and Add Using Picture Graphs
		ISIP	Graphing Three Ways
		ISIP	Determining Most and Least with Graphs
		ISIP	Read and Analyze Bar Graphs

1.MDA.5

Draw conclusions from given object graphs, picture graphs, t-charts, tallies, and bar graphs.

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Analyze and Add Using Bar Graphs
		ISIP	Analyze and Add Using Picture Graphs
		ISIP	Graphing Comparison

Identify a penny, nickel, dime and quarter and write the coin values using a ¢ symbol

Code	Digital Student Experience	Code	Teacher Resources
U14	Measurement – Identify Coins by Value	U14	Coin Value Cover-up
U14	Measurement – Identify the Value of a Collection of Mixed Coins	U16	Money Match
		AR	Cent Symbol Four-in-a-Row

Grade 2

Number Sense and Base Ten

2.NSBT.1

Understand place value through 999 by demonstrating that:

- a. 100 can be thought of as a bundle (group) of 10 tens called a "hundred";
- b. The hundreds digit in a three–digit number represents the number of hundreds, the tens digit represents the number of tens, and the ones digit represents the number of ones;
- c. Three–digit numbers can be decomposed in multiple ways (e.g., 524 can be decomposed as 5 hundreds, 2 tens and 4 ones or 4 hundreds, 12 tens and 4 ones, etc....

Code	Digital Student Experience	Code	Teacher Resources
U30	Number Sense – Writing Standard Form from Expanded Form	U30	Building Numbers Using Base Ten Blocks
U30	Number Sense – Writing Expanded Form from Standard Form	U30	Writing Expanded Form from Standard Form
U30	Number Sense – Writing Word Form from Expanded and Standard Form	U30	Writing Word Form from Expanded and Standard Form
		ISIP	Equivalent Representations
		ISIP	Build a Base Ten Cube
		ISIP	Creating Numbers with Base Ten Blocks
		ISIP	Expanded Form Place Value Cups
		ISIP	Writing Standard Form from Expanded Form

Read, write and represent numbers through 999 using concrete models, standard form, and equations in expanded form.

Code	Digital Student Experience	Code	Teacher Resources
U30	Number Sense – Writing Standard Form from Expanded Form	U30	Building Numbers Using Base Ten Blocks
U30	Number Sense – Writing Expanded Form from Standard Form	U30	Writing Expanded Form from Standard Form
U30	Number Sense – Writing Word Form from Expanded and Standard Form	U30	Writing Word Form from Expanded and Standard Form
		ISIP	Equivalent Representations
		ISIP	Build a Base Ten Cube
		ISIP	Creating Numbers with Base Ten Blocks
		ISIP	Expanded Form Place Value Cups
		ISIP	Writing Standard Form from Expanded Form

Compare two numbers with up to three digits using words and symbols (i.e., >, =, or <).

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U30	Number Sense – Comparing Two, Two–Digit Whole Numbers	U30	Comparison – Two-Digit Numbers: Language and Symbols
U30	Number Sense – Comparing Two, Three–Digit Numbers	U30	Comparison – Three–Digit Numbers
U30	Number Sense – Comparing Two, Three–Digit Whole Numbers with Zeroes	ISIP	Steps for Comparing Three–Digit Numbers
		ISIP	Building and Comparing Three-Digit numbers

2.NSBT.5

Add and subtract fluently through 99 using knowledge of place value and properties of operations.

Code	Digital Student Experience	Code	Teacher Resources
U31	Computations and Algebraic Thinking – Adding with Regrouping Using Concrete Models	U31	Adding with Regrouping – Concrete
U31	Computations and Algebraic Thinking – Subtracting with Regrouping Using Concrete Models	U31	Addition Using Partitioning
U31	Computations and Algebraic Thinking – Adding with Regrouping – Partitioning	U31	Subtraction Using Partitioning
U31	Computations and Algebraic Thinking – Subtracting with Regrouping – Partitioning	U31	Adding on a Number Line

Add and subtract fluently through 99 using knowledge of place value and properties of operations.

Code	Digital Student Experience	Code	Teacher Resources
U31	Computations and Algebraic Thinking – Adding on a Number Line	U31	Subtracting on a Number Line
U31	Computations and Algebraic Thinking – Subtracting on a Number Line	U31	Fact Families – Addition and Subtraction
U31	Computations and Algebraic Thinking – Fact Families – Addition and Subtraction	ISIP	Partitioning for Addition
		ISIP	Using Arrow Paths to Add and Subtract
		FP	Fact Family Dominos (Addition/Subtraction)
		FP	Addition Fast Track
		FP	Subtraction Fast Track
		FP	Left-Hand, Right-Hand Grab Bag
		FP	Shake It! Make It! Solve It! Addition
		FP	Sticky Sums
		FP	Wipe Out
		FP	Write, Tally, Draw

Add and subtract through 999 using concrete models, drawings, and symbols which convey strategies connected to place value understanding.

Code	Digital Student Experience	Code	Teacher Resources
U31	Computations and Algebraic Thinking – Adding with Regrouping Using Concrete Models	U31	Adding with Regrouping – Concrete
U31	Computations and Algebraic Thinking – Subtracting with Regrouping Using Concrete Models	U31	Addition Using Partitioning
U31	Computations and Algebraic Thinking – Adding with Regrouping – Partitioning	U31	Subtraction Using Partitioning
U31	Computations and Algebraic Thinking – Subtracting with Regrouping – Partitioning	U31	Adding on a Number Line
U31	Computations and Algebraic Thinking – Adding on a Number Line	U31	Subtracting on a Number Line
U31	Computations and Algebraic Thinking – Subtracting on a Number Line	U31	Fact Families – Addition and Subtraction
U31	Computations and Algebraic Thinking – Fact Families – Addition and Subtraction	ISIP	Partitioning for Addition
		ISIP	Using Arrow Paths to Add and Subtract
		FP	Fact Family Dominos (Addition/Subtraction)
		FP	Addition Fast Track
		FP	Subtraction Fast Track
		FP	Left-Hand, Right-Hand Grab Bag

Add and subtract through 999 using concrete models, drawings, and symbols which convey strategies connected to place value understanding.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
		FP	Shake It! Make It! Solve It! Addition
		FP	Sticky Sums
		FP	Wipe Out
		FP	Write, Tally, Draw

Algebraic Thinking and Operations

2.ATO.1

46

Solve one— and two—step real—world/story problems using addition (as a joining action and as a part—part—whole action) and subtraction (as a separation action, finding parts of the whole, and as a comparison) through 99 with unknowns in all positions.

Code	Digital Student Experience	Code	Teacher Resources
U32	Computations and Algebraic Thinking – Two–Step Problems – Addition and Subtraction – Unknowns at the End	U32	Build and Solve Two-Step Equations with Addition and Subtraction
U32	Computations and Algebraic Thinking – Two–Step Problems – Addition and Subtraction – Unknowns in the Middle	U32	Build Multistep Equations with Multiple Operations
		U32	Solve Multistep Equations with Multiple Operations

Demonstrate fluency with addition and related subtraction facts through 20.

Code	Digital Student Experience	Code	Teacher Resources
U31	Computations and Algebraic Thinking – Fact Families – Addition and Subtraction	U31	Fact Families – Addition and Subtraction
		ISIP	Addition and Subtraction Fact Families
		FP	Fact Family Dominos (Addition/Subtraction)
		FP	Addition Fast Track
		FP	Subtraction Fast Track
		FP	Left-Hand, Right-Hand Grab Bag
		FP	Shake It! Make It! Solve It! Addition
		FP	Sticky Sums
		FP	Wipe Out
		FP	Write, Tally, Draw
		FP	Building Sums to Twenty

Determine whether a number through 20 is odd or even using pairings of objects, counting by twos, or finding two equal addends to represent the number (e.g., 3 + 3 = 6).

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U30	Computations and Algebraic Thinking – Even and Odd Pairing	U30	Determining Even and Odd by Pairing

2.ATO.4

Use repeated addition to find the total number of objects arranged in a rectangular array with up to 5 rows and up to 5 columns; write an equation to express the total as a sum of equal addends.

Code	Digital Student Experience	Code	Teacher Resources
U32	Computations and Algebraic Thinking – Addition Arrays	U32	Addition Arrays

Geometry

2.G.3

Partition squares, rectangles and circles into two or four equal parts, and describe the parts using the words halves, fourths, a half of, and a fourth of. Understand that when partitioning a square, rectangle or circle into two or four equal parts, the parts become smaller as the number of parts increases.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U32	Geometry – Partitioning to Identify Halves, Thirds, and Fourths	U32	Equal Shares of Identical Wholes
U32	Geometry – Equal Shares of Identical Wholes		

Measurement and Data Analysis

2.MDA.1

Select and use appropriate tools (e.g., rulers, yardsticks, meter sticks, measuring tapes) to measure the length of an object.

Code	Digital Student Experience	Code	Teacher Resources
U33	Measurement – Choose Units and Measure Lengths	U33	Choosing Units of Linear Measurement
U33	Measurement – Measure to the Nearest Centimeter	U33	Measure to the Nearest Inch
		U33	Measure to the Nearest Centimeter
		ISIP	Appropriate Tools for Linear Measurement
		ISIP	How to Use Linear Measurement Tools

Select and use appropriate tools (e.g., rulers, yardsticks, meter sticks, measuring tapes) to measure the length of an object.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Measuring Objects
		ISIP	Ruler Relay

2.MDA.2

Measure the same object or distance using a standard unit of one length and then a standard unit of a different length and explain verbally and in writing how and why the measurements differ.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Unit Relationships

2.MDA.4

Measure to determine how much longer one object is than another, using standard length units.

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Ruler Relay

Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers 0, 1, 2, ..., and represent whole–number sums and differences through 99 on a number line diagram.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U31	Computations and Algebraic Thinking – Adding on a Number Line	U31	Adding on a Number Line
U31	Computations and Algebraic Thinking – Subtracting on a Number Line	U31	Subtracting on a Number Line

2.MDA.6

Use analog and digital clocks to tell and record time to the nearest five-minute interval using a.m. and p.m.

Code	Digital Student Experience	Code	Teacher Resources
U34	Measurement – Tell Time to the Nearest Five Minutes	U34	Time to the Nearest Five Minutes
		U34	Time – AM and PM
		U34	Time to the Quarter Hour

Solve real-world/story problems involving dollar bills using the \$ symbol or involving quarters, dimes, nickels, and pennies using the ¢ symbol.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
		U32	Money Word Problems

2.MDA.10

Draw conclusions from t-charts, object graphs, picture graphs, and bar graphs.

Code	Digital Student Experience	Code	Teacher Resources
U33	Data Analysis – Solving Problems Using Information Presented in Picture Graphs	U33	Creating Picture Graphs
U33	Data Analysis – Solving Problems Using Information Presented in Bar Graphs	U33	Interpreting Picture Graphs
U33	Data Analysis – Solving Problems Using Information Presented in Picture Graphs	U33	Analyzing Picture Graphs
U33	Data Analysis – Solving Problems Using Information Presented in Bar Graphs	U33	Creating Bar Graphs
		U33	Interpreting Bar Graphs
		U33	Analyzing Bar Graphs

Grade 3

Number Sense and Base Ten

3.NSBT.1

Use place value understanding to round whole numbers to the nearest 10 or 100.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U35	Number Sense – Rounding to the Nearest Ten	U35	Rounding – Nearest Ten
U35	Number Sense – Rounding to the Nearest Hundred	U35	Rounding – Nearest Hundred
		U35	Rounding – Nearest Ten, Hundred, Thousand

3.NSBT.2

Add and subtract whole numbers fluently to 1,000 using knowledge of place value and properties of operations.

Code	Digital Student Experience	Code	Teacher Resources
U36	Computations and Algebraic Thinking – Two–Step Word Problems – All Operations	U36	Build and Solve Two-Step Equations with All Operations

Multiply one-digit whole numbers by multiples of 10 in the range 10 - 90, using knowledge of place value and properties of operations.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U35	Computations and Algebraic Thinking – Arithmetic Patterns in Multiplication	U35	Arithmetic Patterns in Multiplication

Number Sense – Fractions

3.NSF.1

Develop an understanding of fractions (i.e., denominators 2, 3, 4, 6, 8, 10) as numbers.

- a. A fraction 1/b (called a unit fraction) is the quantity formed by one part when a whole is partitioned into b equal parts;
- b. A fraction a/b is the quantity formed by a parts of size 1/b;
- c. A fraction is a number that can be represented on a number line based on counts of a unit fraction;
- d. A fraction can be represented using set, area, and linear models.

Code	Digital Student Experience	Code	Teacher Resources
		U37	Fractions Equivalent to One
		U37	Fractions Equivalent to Whole Numbers
		U37	Mixed Fractions on a Number Line
		U37	Many Equivalent Fractions
		U37	Identifying Equivalent Fractions

3.NSF.1

Develop an understanding of fractions (i.e., denominators 2, 3, 4, 6, 8, 10) as numbers.

- a. A fraction 1/b (called a unit fraction) is the quantity formed by one part when a whole is partitioned into b equal parts;
- b. A fraction a/b is the quantity formed by a parts of size 1/b;
- c. A fraction is a number that can be represented on a number line based on counts of a unit fraction;
- d. A fraction can be represented using set, area, and linear models.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Writing Fractions Using Symbolic Notation

3.NSF.2

Understand a fraction as a number on the number line; represent fractions on a number line diagram.

- a. Two fractions are equal if they are the same size, based on the same whole, or at the same point on a number line;
- b. Fraction equivalence can be represented using set, area, and linear models;
- c. Whole numbers can be written as fractions (e.g., 4=4/1 and 1=4/4);
- d. Fractions with the same numerator or same denominator can be compared by reasoning about their size based on the same whole.

Code	Digital Student Experience	Code	Teacher Resources
U37	Number Sense – Equivalent Fractions	U37	Fractions Equivalent to One
U37	Number Sense – Fractions Equivalent to One	U37	Fractions Equivalent to Whole Numbers
U37	Number Sense – Many Equivalent Fractions	U37	Mixed Fractions on a Number Line
		U37	Many Equivalent Fractions

3.NSF.2

Understand a fraction as a number on the number line; represent fractions on a number line diagram.

- a. Two fractions are equal if they are the same size, based on the same whole, or at the same point on a number line;
- b. Fraction equivalence can be represented using set, area, and linear models;
- c. Whole numbers can be written as fractions (e.g., 4 = 4/1 and 1 = 4/4);
- d. Fractions with the same numerator or same denominator can be compared by reasoning about their size based on the same whole.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
		U37	Identifying Equivalent Fractions

3.NSF.3

Develop an understanding of mixed numbers (i.e., denominators 2, 3, 4, 6, 8, 10) as iterations of unit fractions on a number line.

Code	Digital Student Experience	Code	Teacher Resources
U37	Number Sense – Mixed Numbers	U37	Mixed Fractions on a Number Line

Algebraic Thinking and Operations

3.ATO.1

Use concrete objects, drawings and symbols to represent multiplication facts of two single-digit whole numbers and explain the relationship between the factors (i.e., 0-10) and the product.

Code	Digital Student Experience	Code	Teacher Resources
U35	Computations and Algebraic Thinking – Arithmetic Patterns in Multiplication	U35	Arithmetic Patterns in Multiplication
U36	Computations and Algebraic Thinking – Multiply One–Digit Numbers Using Concrete Models	U36	One-Digit by One-Digit Multiplication
U36	Computations and Algebraic Thinking – Multiply One–Digit Numbers Using 1x1 Arrays	U36	Multiplying Two One-Digit Numbers with Arrays
		U36	Problem Solving without Numbers: Multiplication and Division
		ISIP	Relating Multiplication and Division
		ISIP	Practicing with Fact Families
		ISIP	Using Strip Diagrams to Solve Compare Problems
		FP	Multominoes
		FP	Tall Towers
		FP	Dice Blocks
		FP	Multiplication Fast Track

Use concrete objects, drawings and symbols to represent division without remainders and explain the relationship among the whole number quotient (i.e., 0-10), divisor (i.e., 0-10), and dividend.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
		U36	Problem Solving without Numbers: Multiplication and Division
		ISIP	Relating Multiplication and Division
		ISIP	Practicing Fact Families
		ISIP	Using Strip Diagrams to Solve Compare Properties

3.ATO.3

Solve real—world problems involving equal groups, area/array, and number line models using basic multiplication and related division facts. Represent the problem situation using an equation with a symbol for the unknown.

Code	Digital Student Experience	Code	Teacher Resources
U36	Computations and Algebraic Thinking – Build and Solve Two–Step Word Problems with All Operations	U36	Build and Solve Two-Step Equations with All Operations
		ISIP	Problem Solving without Numbers: Multiplication and Division
		ISIP	Using Strip Diagrams to Solve Compare Problems
		ISIP	Doubling and Halving

Solve real—world problems involving equal groups, area/array, and number line models using basic multiplication and related division facts. Represent the problem situation using an equation with a symbol for the unknown.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Associative Property of Multiplication

3.ATO.4

Determine the unknown whole number in a multiplication or division equation relating three whole numbers when the unknown is a missing factor, product, dividend, divisor, or quotient.

Code	Digital Student Experience	Code	Teacher Resources
U36	Computations and Algebraic Thinking – Build and Solve Two–Step Word Problems with All Operations	U36	Fact Families: Multiplication and Division
		U36	Build and Solve Two-Step Equations with All Operations
		ISIP	Relating Multiplication and Division
		ISIP	Practicing Fact Families
		ISIP	Using Strip Diagrams to Solve Compare Properties
		ISIP	Commutative Property of Multiplication

Apply properties of operations (i.e., Commutative Property of Multiplication, Associative Property of Multiplication, and Distributive Property) as strategies to multiply and divide and explain the reasoning.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U36	Computations and Algebraic Thinking – Properties of Multiplication	ISIP	Commutative Property of Multiplication
		ISIP	Associative Property of Multiplication

3.ATO.6

Understand division as a missing factor problem.

Code	Digital Student Experience	Code	Teacher Resources
U36	Computations and Algebraic Thinking – Fact Families – Multiplication and Division	U36	Fact Families: Multiplication and Division
		ISIP	Relating Multiplication and Division
		ISIP	Practicing with Fact Families

Demonstrate fluency with basic multiplication and related division facts of products and dividends through 100.

Code	Digital Student Experience	Code	Teacher Resources
U35	Computations and Algebraic Thinking – Arithmetic Patterns in Multiplication	U35	Arithmetic Patterns in Multiplication
U36	Computations and Algebraic Thinking – Multiply One–Digit Numbers Using Concrete Models	U36	One-Digit by One-Digit Multiplication
U36	Computations and Algebraic Thinking – Fact Families – Multiplication and Division	U36	Multiplying Two One-Digit Numbers with Arrays
U36	Computations and Algebraic Thinking – Two–Step Word Problems – All Operations	U36	Fact Families: Multiplication and Division
U36	Computations and Algebraic Thinking – Properties of Multiplication	U36	Build and Solve Two-Step Equations with All Operations
		ISIP	Relating Multiplication and Division
		ISIP	Practicing Fact Families
		ISIP	Using Strip Diagrams to Solve Compare Properties
		ISIP	Commutative Property of Multiplication
		ISIP	Doubling and Halving
		FP	Multominoes
		FP	Tall Towers
		FP	Dice Blocks

Demonstrate fluency with basic multiplication and related division facts of products and dividends through 100.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
		FP	Wipe Out

3.ATO.8

Solve two-step real-world problems using addition, subtraction, multiplication and division of whole numbers and having whole number answers. Represent these problems using equations with a letter for the unknown quantity.

Code	Digital Student Experience	Code	Teacher Resources
U36	Computations and Algebraic Thinking – Two–Step Word Problems – All Operations	U36	Problem Solving without Numbers: Addition and Subtraction
		U36	Problem Solving without Numbers: Multiplication and Division
		U36	Build and Solve Two-Step Equations with All Operations

Identify a rule for an arithmetic pattern (e.g., patterns in the addition table or multiplication table).

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U35	Computations and Algebraic Thinking – Arithmetic Patterns in Multiplication	U36	Arithmetic Patterns in Multiplication
		U36	Fact Families: Multiplication and Division
		ISIP	Doubling and Halving
		ISIP	Practicing with Fact Families
		ISIP	Relating Multiplication and Division
		ISIP	Commutative Property of Multiplication

Geometry

3.G.1

Understand that shapes in different categories (e.g., rhombus, rectangle, square, and other 4–sided shapes) may share attributes (e.g., 4–sided figures) and the shared attributes can define a larger category (e.g., quadrilateral). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Areas of Squares
		ISIP	Finding the Area of Squares

3.G.1

Understand that shapes in different categories (e.g., rhombus, rectangle, square, and other 4–sided shapes) may share attributes (e.g., 4–sided figures) and the shared attributes can define a larger category (e.g., quadrilateral). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Finding the Area of Polygons

3.G.2

Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole.

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Recognizing Fractions in Different Forms
		ISIP	Finding the Area of Rectangles

Measurement and Data Analysis

3.MDA.1

Use analog and digital clocks to determine and record time to the nearest minute, using *a.m.* and *p.m.*; measure time intervals; and solve problems involving addition and subtraction of time intervals within 60 minutes.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U39	Measurement – Determine Elapsed Time on a Number Line	U39	Elapsed Time within One Hour
		U39	Elapsed Time Across Hours

3.MDA.4

Generate data by measuring length to the nearest inch, half-inch and quarter-inch and organize the data in a line plot using a horizontal scale marked off in appropriate units.

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Measuring Length to the Nearest Quarter Inch

Understand the concept of area measurement:

- a. Recognize area as an attribute of plane figures;
- b. Measure area by building arrays and counting standard unit squares;
- c. Determine the area of a rectilinear polygon and relate to multiplication and addition.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
		U38	Perimeter Bundle – Lesson A – Finding Perimeter
		ISIP	Area Square
		ISIP	Finding the Area of Polygons
		ISIP	Finding the Area of Rectangles

3.MDA.6

Solve real—world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.

Code	Digital Student Experience	Code	Teacher Resources
U38	Measurement – Perimeter Word Problems	U38	Perimeter Bundle – Lesson A – Finding Perimeter
		U38	Perimeter Bundle – Lesson B – Missing Side Lengths
		U38	Perimeter Bundle – Lesson C – Missing Side Lengths in Word Problems
		ISIP	Perimeter Bundle – Progress Check

Solve real—world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Finding the Area of Polygons
		ISIP	Finding the Area of Rectangles

Grade 4

Number Sense and Base Ten

4.NSBT.1

Understand that, in a multi-digit whole number, a digit represents ten times what the same digit represents in the place to its right.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U40	Number Sense – Convert Numbers from Expanded Form to Standard Form – Thousands	U40	Writing Expanded Form from Standard through Thousands and Millions
U40	Number Sense – Convert Numbers in Expanded and Standard Forms to Word Form – Thousands	U40	Writing Standard Form from Expanded through Thousands and Millions
U46	Number Sense – Word Form of Decimals (0.10 – 0.90)	U40	Writing Word Form from Expanded and Standard through Thousands and Millions

4.NSBT.2

Recognize math periods and number patterns within each period to read and write in standard form large numbers through 999,999,999.

Code	Digital Student Experience	Code	Teacher Resources
U40	Number Sense – Expanded Form to Thousands	U40	Writing Expanded Form from Standard through Thousands and Millions
U40	Number Sense – Expanded Form to Millions	U40	Writing Standard Form from Expanded through Thousands and Millions
U40	Number Sense – Writing Expanded Form from Standard Form through Millions	U40	Writing Word Form from Expanded and Standard through Thousands and Millions

Recognize math periods and number patterns within each period to read and write in standard form large numbers through 999,999,999.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U40	Number Sense – Standard Form to Thousands		
U43	Number Sense – Word Form of Decimals with Visual Models (0.01–1.99)		

4.NSBT.3

Use rounding as one form of estimation and round whole numbers to any given place value.

Code	Digital Student Experience	Code	Teacher Resources
U40	Number Sense – Rounding to the Nearest Thousand	U40	Rounding – Nearest Thousand
U40	Number Sense – Round to Any Place up to Thousands with Number Line	U40	Rounding – Nearest Ten, Hundred, Thousand
U40	Number Sense – Round to Any Place up to Thousands with Algorithm	U40	Rounding within Three- and Four-Digit Numbers – Number Line
U40	Number Sense – Rounding with Zero as the Rounding Digit	U40	Rounding within Three- and Four-Digit Numbers – Abstract
		U40	Zero as the Rounding Digit

Fluently add and subtract multi-digit whole numbers using strategies to include a standard algorithm.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Adding Multi-Digit Numbers and Checking for Reasonableness

4.NSBT.5

Multiply up to a four-digit number by a one-digit number and multiply a two-digit number by a two-digit number using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using rectangular arrays, area models and/or equations.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U41	Multiply Two-Digit Numbers with Models	U41	Two-Digit by Two-Digit Concrete Multiplication

Number Sense - Fractions

4.NSF.1

Explain why a fraction (i.e., denominators 2, 3, 4, 5, 6, 8, 10, 12, 25, 100), a/b, is equivalent to a fraction, $n \times a/n \times b$, by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.

Code	Digital Student Experience	Code	Teacher Resources
U43	Number Sense – Determine Equivalent Fractions with Models	U43	Fraction Comparison Using Benchmark Fractions

4.NSF.1

Explain why a fraction (i.e., denominators 2, 3, 4, 5, 6, 8, 10, 12, 25, 100), a/b, is equivalent to a fraction, $n \times a/n \times b$, by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U43	Number Sense – Comparing Fractions Using Benchmark Fractions	U43	Compare Fractions- Symbols
U43	Number Sense – Compare Fractions Using Symbols	U43	Compare Fractions by Creating Common Denominators
		ISIP	Comparing Fractions
		ISIP	Using Area Models to Compare Fractions

4.NSF.2

Compare two given fractions (i.e., denominators 2, 3, 4, 5, 6, 8, 10, 12, 25, 100) by creating common denominators or numerators, or by comparing to a benchmark fraction such as 1/2 and represent the comparison using the symbols >, =, or <.

Code	Digital Student Experience	Code	Teacher Resources
U43	Number Sense – Comparing Fractions using Benchmark Fractions	U43	Fraction Comparison Using Benchmark Fractions
U43	Number Sense – Comparing Fractions with Unlike Denominators	U43	Compare Fractions Using Symbols
		U43	Compare Fractions by Creating Common Denominators
		ISIP	Comparing Fractions

4.NSF.2

Compare two given fractions (i.e., denominators 2, 3, 4, 5, 6, 8, 10, 12, 25, 100) by creating common denominators or numerators, or by comparing to a benchmark fraction such as 1/2 and represent the comparison using the symbols >, =, or <.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Using Area Models to Compare Fractions

4.NSF.3

Develop an understanding of addition and subtraction of fractions (i.e., denominators 2, 3, 4, 5, 6, 8, 10, 12, 25, 100) based on unit fractions.

- a. Compose and decompose a fraction in more than one way, recording each composition and decomposition as an addition or subtraction equation.
- b. Add and subtract mixed numbers with like denominators,
- c. Solve real-world problems involving addition and subtraction of fractions referring to the same whole and having like denominators.

Code	Digital Student Experience	Code	Teacher Resources
U43	Number Sense – Decomposing Fractions	U43	Add Like Denominators of Ten and One Hundred
U43	Number Sense – Adding Fractions with Denominators of Ten and One Hundred	U43	Adding Denominators of Ten to Denominators of One Hundred
U43	Number Sense – Add Fractions with Both Denominators of 10 and 100		

Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and 100.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U43	Number Sense – Equivalent Fractions with Models	U43	Expressing Equivalent Fractions with Denominators of Ten and One Hundred
U43	Number Sense – Comparing Fractions using Benchmark Fractions	U43	Adding Like Denominators of Ten and One Hundred
		U43	Add Denominators of Ten to Denominators of One Hundred

Algebraic Thinking and Operations

4.ATO.1

Interpret a multiplication equation as a comparison (e.g. interpret $35 = 5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5.) Represent verbal statements of multiplicative comparisons as multiplication equations.

Code	Digital Student Experience	Code	Teacher Resources
U42	Computations and Algebraic Thinking – Solve Multistep Word Problems	U42	Building and Solving Multistep Equations with All Operations

4.ATO.2

Solve real-world problems using multiplication (product unknown) and division (group size unknown, number of groups unknown).

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U42	Computations and Algebraic Thinking – Solve Multistep Word Problems	U42	Building and Solving Multistep Equations with All Operations
		ISIP	Using Multiplication to Solve If-Then Word Problems

4.ATO.3

Solve multi-step, real-world problems using the four operations. Represent the problem using an equation with a variable as the unknown quantity.

Code	Digital Student Experience	Code	Teacher Resources
U42	Computations and Algebraic Thinking – Solve Multistep Word Problems	U42	Building and Solving Multistep Equations with All Operations
		ISIP	Using Multiplication to Solve If-Then Word Problems

Geometry

4.G.1

Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two–dimensional figures.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
		U45	Measuring Angles with a Protractor
		ISIP	Line and Angle Identification

4.G.2

Classify quadrilaterals based on the presence or absence of parallel or perpendicular lines.

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Line and Angle Identification

Measurement and Data Analysis

4.MDA.1

Convert measurements within a single system of measurement, customary (i.e., in., ft., yd., oz., lb., sec., min., hr.) or metric (i.e., cm, m, km, g, kg, mL, L) from a larger to a smaller unit.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
		U44	Converting Units of Measurement in Word Problems

4.MDA.2

Solve real—world problems involving distance/length, intervals of time within 12 hours, liquid volume, mass, and money using the four operations.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Measuring Length to the Nearest Quarter Inch
		ISIP	Calculating Elapsed Time

4.MDA.3

Apply the area and perimeter formulas for rectangles.

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Finding Area of Rectangles and Squares by Using Multiplication

4.MDA.3

Apply the area and perimeter formulas for rectangles.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Quantifying Areas of Rectangles and Squares
		ISIP	Connecting Multiplication and Area

4.MDA.4

Create a line plot to display a data set (i.e., generated by measuring length to the nearest quarter-inch and eighth-inch) and interpret the line plot.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U45	Data Analysis – Line Plots with Fractional Data	U45	Line Plots with Fractional Data
U45	Data Analysis – Analyzing Line Plots	U45	Finding Scales of Line Plots

4.MDA.5

Understand the relationship of an angle measurement to a circle.

Code	Digital Student Experience	Code	Teacher Resources
U45	Geometry – Measuring Angles with a Protractor	U45	Measuring Angles with a Protractor
U45	Geometry – Find Missing Angles	ISIP	Line and Angle Identification

4.MDA.6

Measure angles in whole number degrees using a protractor. Sketch angles of specified measure.

Code	Digital Student Experience	Code	Teacher Resources
U45	Geometry – Measuring Angles with a Protractor	U45	Measuring Angles with a Protractor
		ISIP	Line and Angle Identification

Grade 5

Number Sense and Base Ten

5.NSBT.1

Understand that, in a multi–digit number, a digit in one place represents 10 times what the same digit represents in the place to its right and 1/10 what the same digit represents in the place to its left.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U46	Number Sense – Multiplying Decimals by 10 and 100	U46	Multiplying Decimals by Ten and One Hundred
U46	Number Sense – Dividing Decimals by 10 and 100	U46	Dividing Decimals by Ten and One Hundred
U46	Number Sense – Exploring Powers of 10	U46	Multiplying and Dividing Decimals by Powers of Ten
U46	Number Sense – Multiplying and Dividing Decimals by Powers of 10	U46	Exploring Powers of Ten

5.NSBT.2

Use whole number exponents to explain:

- a. Patterns in the number of zeroes of the product when multiplying a number by powers of 10
- b. Patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10.

Code	Digital Student Experience	Code	Teacher Resources
U46	Number Sense – Multiplying Decimals by 10 and 100	U46	Multiplying Decimals by Ten and One Hundred
U46	Number Sense – Dividing Decimals by 10 and 100	U46	Dividing Decimals by Ten and One Hundred

5.NSBT.2

Use whole number exponents to explain:

- a. Patterns in the number of zeroes of the product when multiplying a number by powers of 10
- b. Patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U46	Number Sense – Exploring Powers of 10	U46	Multiplying and Dividing Decimals by Powers of Ten
U46	Number Sense – Multiplying and Dividing Decimals by Powers of 10	U46	Exploring Powers of Ten

5.NSBT.3

Read and write decimals in standard and expanded form. Compare two decimal numbers to the thousandths using the symbols >, =, or <.

Code	Digital Student Experience	Code	Teacher Resources
U46	Number Sense – Concrete Decimal Comparison	U46	Decimal Comparison on the Number Line
U46	Number Sense – Decimal Comparison with Grids	U46	Abstract Decimal Comparison
U46	Number Sense – Comparison of Tenths and Hundredths on the Number Line	U46	Decimals with Whole Number Comparison
U46	Number Sense – Abstract Comparison of Tenths and Hundredths		
U46	Number Sense – Abstract Comparison of Thousandths		

5.NSBT.3

Read and write decimals in standard and expanded form. Compare two decimal numbers to the thousandths using the symbols >, =, or <.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U46	Number Sense – Abstract Comparison of Whole Numbers and Decimals		

5.NSBT.6

Divide up to a four-digit dividend by a two-digit divisor, using strategies based on place value, the properties of operations, and the relationship between multiplication and division.

Code	Digital Student Experience	Code	Teacher Resources
U47	Computations and Algebraic Thinking – Divide Four–Digit Numbers by Two–Digit Numbers	U47	Four-Digit by Two-Digit Division (Partial Quotients)
		ISIP	Estimating Quotients Using Compatible Numbers
		ISIP	Using Models to Practice Extended Division Facts
		ISIP	Models for Understanding Remainders

5.NSBT.7

Add, subtract, multiply, and divide decimal numbers to hundredths using concrete area models and drawings.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U46	Number Sense – Multiplying Decimals by 10 and 100	U46	Multiplying Decimals by Ten and One Hundred
U46	Number Sense – Dividing Decimals by 10 and 100	U46	Dividing Decimals by Ten and One Hundred
U46	Number Sense – Visual Representation for Multiplying Decimals	U46	Multiplying and Dividing Decimals by Powers of Ten

Number Sense-Fractions

5.NSF.1

Add and subtract fractions with unlike denominators (including mixed numbers) using a variety of models, including an area model and number line

Code	Digital Student Experience	Code	Teacher Resources
U48	Computations and Algebraic Thinking – Add Fractions with Unlike Denominators	U48	Adding Fractions with Unlike Denominators
U48	Computations and Algebraic Thinking – Subtract Fractions with Unlike Denominators	ISIP	Adding and Subtracting Fractions with Unlike Denominators

Solve real-world problems involving addition and subtraction of fractions with unlike denominators.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U48	Computations and Algebraic Thinking – Add Fractions with Unlike Denominators	U48	Adding Fractions with Unlike Denominators
U48	Computations and Algebraic Thinking – Subtract Fractions with Unlike Denominators	U48	Subtracting Fractions with Unlike Denominators
		ISIP	Adding and Subtracting Fractions with Unlike Denominators

5.NSF.4

Extend the concept of multiplication to multiply a fraction or whole number by a fraction.

- a. Recognize the relationship between multiplying fractions and finding the areas of rectangles with fractional side lengths;
- b. Interpret multiplication of a fraction by a whole number and a whole number by a fraction and compute the product;
- c. Interpret multiplication in which both factors are fractions less than one and compute the product.

Code	Digital Student Experience	Code	Teacher Resources
U48	Computations and Algebraic Thinking – Multiply by Fractions Less Than One	U48	Multiplying by Fractions Less Than One
		U48	Multiplying by Fractions Less Than One (Extra Practice)
		U48	Multiplying Fractions Less Than One with Improper Fractions

Extend the concept of multiplication to multiply a fraction or whole number by a fraction.

- a. Recognize the relationship between multiplying fractions and finding the areas of rectangles with fractional side lengths;
- b. Interpret multiplication of a fraction by a whole number and a whole number by a fraction and compute the product;
- c. Interpret multiplication in which both factors are fractions less than one and compute the product.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
		U48	Multiplying Whole Numbers by Fractions Greater Than One

5.NSF.5

Justify the reasonableness of a product when multiplying with fractions.

- a. Estimate the size of the product based on the size of the two factors;
- b. Explain why multiplying a given number by a number greater than 1 (e.g., improper fractions, mixed numbers, whole numbers) results in a product larger than the given number;
- c. Explain why multiplying a given number by a fraction less than 1 results in a product smaller than the given number;
- d. Explain why multiplying the numerator and denominator by the same number has the same effect as multiplying the fraction by 1.

Code	Digital Student Experience	Code	Teacher Resources
U48	Computations and Algebraic Thinking – Multiply by Fractions Less Than One	U48	Multiplying by Fractions Less Than One
		U48	Multiplying by Fractions Less Than One (Extra Practice)
		U48	Multiplying Fractions Less Than One with Improper Fractions

Justify the reasonableness of a product when multiplying with fractions.

- a. Estimate the size of the product based on the size of the two factors;
- b. Explain why multiplying a given number by a number greater than 1 (e.g., improper fractions, mixed numbers, whole numbers) results in a product larger than the given number;
- c. Explain why multiplying a given number by a fraction less than 1 results in a product smaller than the given number;
- d. Explain why multiplying the numerator and denominator by the same number has the same effect as multiplying the fraction by 1.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
		U48	Multiplying Whole Numbers by Fractions Greater Than One

5.NSF.6

Solve real-world problems involving multiplication of a fraction by a fraction, improper fraction and a mixed number.

Code	Digital Student Experience	Code	Teacher Resources
		U48	Multiplying by Fractions Less Than One
		U48	Multiplying by Fractions Less Than One (Extra Practice)
		U48	Multiplying Fractions Less Than One with Improper Fractions
		U48	Multiplying Whole Numbers by Fractions Greater Than One

Algebraic Thinking and Operations

5.ATO.1

Evaluate numerical expressions involving grouping symbols (i.e., parentheses, brackets, braces).

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U49	Computation and Algebraic Reasoning – Evaluate Numerical Expressions with Parentheses	U49	Evaluating Numerical Expressions with Parentheses
U49	Computation and Algebraic Reasoning – Interpret Numerical Expressions with Parentheses	U49	Identifying Expressions in Scenarios
U49	Computation and Algebraic Reasoning – Write Numerical Expressions from Words	U49	Writing Expressions from Words – Addition and Subtraction
		U49	Writing Expressions from Words – Subtraction

5.ATO.2

Translate verbal phrases into numerical expressions and interpret numerical expressions as verbal phrases.

Code	Digital Student Experience	Code	Teacher Resources
U49	Computation and Algebraic Reasoning – Evaluate Numerical Expressions with Parentheses	U49	Evaluating Numerical Expressions with Parentheses
U49	Computation and Algebraic Reasoning – Interpret Numerical Expressions with Parentheses	U49	Identifying Expressions in Scenarios
U49	Computation and Algebraic Reasoning – Write Numerical Expressions from Words	U49	Writing Expressions from Words – Addition and Subtraction

5.ATO.2

Translate verbal phrases into numerical expressions and interpret numerical expressions as verbal phrases.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
		U49	Writing Expressions from Words – Subtraction

5.ATO.3

Investigate the relationship between two numerical patterns.

- a. Generate two numerical patterns given two rules and organize in tables;
- b. Translate the two numerical patterns into two sets of ordered pairs;
- c. Graph the two sets of ordered pairs on the same coordinate plane;
- d. Identify the relationship between the two numerical patterns.

Code	Digital Student Experience	Code	Teacher Resources
U51	Geometry – Comparing Points on a Coordinate Plane	U51	Plotting Points on a Coordinate Grid
		ISIP	Graphing and Analyzing Lines

Geometry

5.G.1

Define a coordinate system.

- a. The x- and y- axes are perpendicular number lines that intersect at 0 (the origin);
- b. Any point on the coordinate plane can be represented by its coordinates;
- c. The first number in an ordered pair is the x-coordinate and represents the horizontal distance from the origin;
- d. The second number in an ordered pair is the y-coordinate and represents the vertical distance from the origin.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
U51	Geometry – Graph Points in a Coordinate Plane	U51	Plotting Points on a Coordinate Grid
		U51	Graphing and Analyzing Lines
		ISIP	Identifying and Plotting Ordered Pairs on the Coordinate Plane

5.G.2

Plot and interpret points in the first quadrant of the coordinate plane to represent real—world and mathematical situations.

Code	Digital Student Experience	Code	Teacher Resources
U51	Geometry – Graph Points in a Coordinate Plane	U51	Plotting Points on a Coordinate Grid
U51	Geometry – Comparing Points on a Coordinate Plan	U51	Graphing and Analyzing Lines
		ISIP	Identifying and Plotting Ordered Pairs on the Coordinate Plane

5.G.3

Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Analyzing Properties of Two- and Three-Dimensional Figures

5.G.4

Classify two-dimensional figures in a hierarchy based on their attributes.

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Analyzing Properties of Two- and Three-Dimensional Figures

Measurement and Data Analysis

5.MDA.1

Know relative sizes of these U.S. customary measurement units: pounds, ounces, miles, yards, feet, inches, gallons, quarts, pints, cups, fluid ounces, hours, minutes, and seconds. Convert between pounds and ounces; miles and feet; yards, feet, and inches; gallons, quarts, pints, cups, and fluid ounces; hours, minutes, and seconds in solving multi–step, real–world problems.

MP 1, 2, 3, 4, 5, 6, 7

Code	Digital Student Experience	Code	Teacher Resources
		ISIP	Converting Standard Units of Measurement
		ISIP	Performing Customary Measurement Conversions

5.MDA.3

Understand the concept of volume measurement.

- a. Recognize volume as an attribute of right rectangular prisms;
- b. Relate volume measurement to the operations of multiplication and addition by packing right rectangular prisms and then counting the layers of standard unit cubes;
- c. Differentiate among perimeter, area and volume and identify which application is appropriate for a given situation.

Code	Digital Student Experience	Code	Teacher Resources
U50	Measurement – Volume of Irregular Figures	U50	Volume of Rectangular Prisms
		ISIP	Volume of Irregular Figures
		ISIP	Integrating Fact Practice and Volume

5.MDA.4

Differentiate among perimeter, area and volume and identify which application is appropriate for a given situation.

Code	Digital Student Experience	Code	Teacher Resources
U50	Measurement – Volume of Irregular Figures	U50	Volume of Rectangular Prisms
		ISIP	Volume of Irregular Figures
		ISIP	Integrating Fact Practice and Volume

Appendix

Classroom Resource

Genera	al Graphic Organizers
Code	Teacher Resources
CR	Dot Paper
CR	Frayer Model
CR	Frayer Model (multiple)
CR	Grid Paper
CR	Grid Paper (cm)
CR	Grid Paper (in)
CR	If-Then Diagram (Large)
CR	If-Then Diagrams
CR	Multiple Number Lines (10-100)
CR	Number Cards (1-10)
CR	Number Cards (1-20)
CR	Number Line 0-10 (Labeled and Blank)
CR	Number Line 0-100 (Labeled and Blank)
CR	Number Line 0-20 (Labeled and Blank)
CR	Number Line 0-50 (Labeled and Blank)

General Graphic Organizers		
Code	Teacher Resources	
CR	Place Value Mat: 3-Column (Blank)	
CR	Place Value Mat: 4-Column (Blank)	
CR	Ten Frame	
CR	Three-Digit Number Cards	
CR	Types of Word Problems Anchor Chart	

Number Sense		
Code	Teacher Resources	
CR	100 Chart	
CR	120 Chart	
CR	Base Ten Block Cards (0-50)	
CR	Base Ten Block Cards (Multiples of Ten)	
CR	Counting Strips (1-10)	
CR	Counting Strips (1-20)	
CR	Decimal Cards	
CR	Decimal Grid: Thousandths	
CR	Decimal Grids: Tenths and Hundredths	
CR	Decimal Models: One Whole Through Thousandths	

Number Sense		
Code	Teacher Resources	
CR	Decimal Place Value: Grid and Chart - Hundredths	
CR	Decimal Place Value: Grid and Chart - Tenths	
CR	Decimal Place Value: Grid and Chart – Thousandths	
CR	Even and Odd Chart	
CR	Fraction Bars	
CR	Fraction Equivalency Cards	
CR	Fraction Model Graphic Organizer	
CR	Multiple Representations of Numbers (1-10)	
CR	Place Value Anchor Chart: Tens and Ones	
CR	Place Value Mat: Multiple Representations to Millions (Labeled)	
CR	Place Value Mat: Multiple Representations to Thousands (Labels)	
CR	Place Value Mat: Tens and Ones (Labeled)	
CR	Place Value Word Cards	
CR	Ten Frame Dot Cards (Large)	
CR	Ten Frame Dot Cards (Small)	

Computations and Algebraic Thinking		
Code	Teacher Resources	
CR	Algebra Tiles	
CR	Algebraic Strip Diagrams	
CR	Coordinate Plane	
CR	Missing Factor Cards	
CR	Multiplication/Division Fact Family Template	
CR	Operation Symbol Cards	
CR	Part Part Whole Mat	
CR	Problem Solving Cards – Addition and Subtraction	
CR	Subitizing Cards (1-5)	

Measur	Measurement		
Code	Resources		
CR	Customary Unit Conversion Cards – Linear Measurement		
CR	Customary Unit Conversion Cards – Liquid Measurement		
CR	Linear Measurement Bundle (Includes the following five resources)		
CR	Linear Measurement Anchor Chart		
CR	Linear Measurement Body Benchmarks Anchor Chart		
CR	Linear Measurement Graphic Organizer		

Measurement		
Code	Resources	
CR	Linear Measurement Steps Anchor Chart	
CR	Linear Measurement Yards vs. Meters Anchor Chart	

Data Analysis	
Code	Teacher Resources
CR	Analyzing Line Plots

Geometry	
Code	Teacher Resources
CR	Three-Dimensional Figure Nets
CR	Two-Dimensional Shapes

Parent Portal Lessons

Early Math PK-1		
Code	Teacher Resources	
PP	Fact Practice Addition Fast Track	
PP	Fact Practice Addition Road Racing	
PP	Fact Practice Building Sums with Dice	

Early Math PK-1		
Code	Teacher Resources	
PP	Fact Practice Choose the Operation (Addition and Subtraction)	
PP	Fact Practice Counting to Answer Math Questions	
PP	Fact Practice Matching Numerals to Quantities	
PP	Fact Practice Recognizing, Ordering and Counting	
PP	Fact Practice Shake It! Make It! Solve It! (Addition)	
PP	Fact Practice Skip Counting Raceway (Skip Counting by Fives and Tens)	
PP	Fact Practice Skip Counting Raceway (Skip Counting by Twos)	
PP	Fact Practice Sticky Sums	
PP	Fact Practice Subtraction Fast Track	
PP	Fact Practice Subtraction Road Racing	
PP	Fact Practice Write, Tally, Dray (Addition)	
PP	Practice Sorting by Attributes	

Istation Math 2-5		
Code	Teacher Resources	
PP	Fact Practice Adding on a Number Line	
PP	Fact Practice Addition and Subtraction Fact Families	
PP	Fact Practice Choose the Operation (Addition and Subtraction)	

Istation Math 2-5		
Code	Teacher Resources	
PP	Fact Practice Choose the Operation (Multiplication and Division)	
PP	Fact Practice Fact Family Dominoes (Addition/Subtraction)	
PP	Fact Practice Identifying Halves, Thirds, Fourths	
PP	Fact Practice Multiplication and Division Fact Family Triangles	
PP	Fact Practice Multiplication Fast Track	
PP	Fact Practice Multiply Then Add	
PP	Fact Practice Multominoes	
PP	Fact Practice Shake It! Make It! Solve It! (Multiplication)	
PP	Fact Practice Sticky Products	
PP	Fact Practice Subtracting on a number Line	
PP	Fact Practice Two-Digit Comparison: Who Has More?	
PP	Fact Practice Two-Digit Comparison: Who Has Less?	
PP	Fact Practice Three- and Four-Digit Comparison: Who Has More?	
PP	Fact Practice Three-and Four-Digit Comparison: Who Has Less?	
PP	Fact Practice Understanding Decimal Numbers	
PP	Fact Practice Write, Expand, Sketch	
PP	Fact Practice Writing Expressions from Scenarios	

Istation Math 2-5		
Code	Teacher Resources	
PP	Practice Linear Measurement Scavenger Hunt (Centimeter)	
PP	Practice Linear Measurement Scavenger Hunt (Inches)	
PP	Practice Plotting Points on a Coordinate Plane	